搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控

赵珂楠 李晟 芦增星 劳斌 郑轩 李润伟 汪志明

引用本文:
Citation:

SrRuO3薄膜中自旋轨道力矩效率和磁矩翻转的晶向调控

赵珂楠, 李晟, 芦增星, 劳斌, 郑轩, 李润伟, 汪志明

Crystal orientation regulation of spin-orbit torque efficiency and magnetization switching in SrRuO3 thin films

Zhao Ke-Nan, Li Sheng, Lu Zeng-Xing, Lao Bin, Zheng Xuan, Li Run-Wei, Wang Zhi-Ming
PDF
HTML
导出引用
  • 过渡金属氧化物SrRuO3薄膜因具有较大且可调的电荷流-自旋流互转换效率而成为自旋轨道力矩(SOT)器件中备受关注的自旋源材料. 然而, 目前对SOT效率的调控主要集中在衬底外延应力调节. 本文研究了晶体取向对SrRuO3薄膜SOT性能的调控作用. 制备了(111)取向SrRuO3/CoPt异质结构, 发现其SOT效率高达0.39, 自旋霍尔电导达$ 2.19 \times {10^5}\hbar /(2e) $ Ω–1·m–1, 分别较(001)取向提高了86%和369%. 此外, 在SrRuO3 (111)器件中实现了低至2.4×1010 A/m2临界电流密度下的电流驱动的垂直磁化翻转, 较(001)晶向降低了37%. 这些结果表明, 晶体取向是显著提升SrRuO3基SOT器件综合性能的有效途径, 为发展高效自旋电子器件提供了新思路.
    Spintronic devices utilize the spin property of electrons for the storage, transmission, and processing of information, and they possess inherent advantages such as low power consumption and non-volatility, thus attracting widespread attention from both academia and industry. Spin-orbit torque (SOT) is an efficient method of manipulating magnetic moments through using electric current for writing, controlling the spin-orbit coupling (SOC) effect within materials to achieve the mutual conversion between charge current and spin current. Enhancing the efficiency of charge-spin conversion is a critical issue in the field of spintronics. Strontium ruthenate (SRO) in transition metal oxides (TMO) has attracted significant attention as a spin source material in SOT devices due to its large and tunable charge-to-spin conversion efficiency. However, current research on SOT control in SRO primarily focuses on utilizing substrate strain, with limited exploration of other control methods. Crystal orientation can produce various novel physical properties by affecting material symmetry and electronic structure, which is one of the important means to control the properties of TMO materials. Considering the close correlation between the SOT effect and electronic structure as well as surface states, crystal orientation is expected to affect SOT properties by adjusting the electronic band structure of TMO. This work investigates the effect of crystal orientation on the SOT performance of SrRuO3 film and develops a novel approach for SOT control. The (111)-oriented SRO/CoPt heterostructures and SOT devices are prepared by using pulse laser deposition, magnetron sputtering, and micro-nano processing techniques. Through harmonic Hall voltage(HHV) measurements, we find that the SOT efficiency reaches 0.39, and the spin Hall conductivity attains 2.19×105$\hbar $/2e Ω–1·m–1, which are 86% and 369% higher than those of the (001) orientation, respectively. Furthermore, current-driven perpendicular magnetization switching is achieved in SrRuO3(111) device at a low critical current density of 2.4×1010 A/m2, which is 37% lower than that of the (001) orientation. These results demonstrate that the crystal orientation can serve as an effective approach to significantly enhancing the comprehensive performance of SrRuO3-based SOT devices, thus providing a new idea for developing high-efficiency spintronic devices.
      通信作者: 李润伟, runweili@nimte.ac.cn ; 汪志明, zhiming.wang@nimte.ac.cn
    • 基金项目: 国家重点研发项目(批准号: 2019YFA0307800, 2017YFA0303600)和国家自然科学基金面上项目(批准号: 12174406, 11874367, 51931011, 52127803)资助的课题.
      Corresponding author: Li Run-Wei, runweili@nimte.ac.cn ; Wang Zhi-Ming, zhiming.wang@nimte.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0307800, 2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos. 12174406, 11874367, 51931011, 52127803).
    [1]

    Sasikanth M, Dmitri E N, Ian A Y 2018 Nat. Phys. 14 338Google Scholar

    [2]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [3]

    Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [5]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439

    [6]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [7]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [8]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186

    [9]

    Everhardt A S, DC M , Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 Phys. Rev. Mater. 3 051201

    [10]

    Wang H L, Meng K Y, Zhang P X, Hou J T, Finley J, Han J H, Yang F Y, Liu L Q 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [11]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [12]

    Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [13]

    Ou Y X, Wang Z, Chang C S, Nair H P, Paik H J, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [14]

    Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A, Suzuki Y 2016 Phys. Rev. B 94 224423Google Scholar

    [15]

    Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 Science 258 1766Google Scholar

    [16]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 Rev. Mod. Phys. 84 253Google Scholar

    [17]

    Wei J W, Zhong H, Liu J Z, Wang X, Meng F Q, Xu H J, Liu Y Z, Luo X, Zhang Q H, Guang Y, Feng J F, Zhang J, Yang L H, Ge C, Gu L, Jin K J, Yu G Q, Han X F 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [18]

    Zhou J, Shu X Y, Lin W N, Shao D F, Chen S H, Liu L, Yang P, Tsymbal E Y, Chen J S 2021 Adv. Mater. 33 2007114Google Scholar

    [19]

    Li S, Lao B, Lu Z X, Zheng X, Zhao K N, Gong L G, Tang T, Wu K Y, Li R W, Wang Z M 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [20]

    Dagotto E 2005 Science 309 257Google Scholar

    [21]

    Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462Google Scholar

    [22]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H F, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 NPJ Flex. Electron. 6 9Google Scholar

    [23]

    Wang Z M, Zhong Z C, MckeownWalker S, Ristic Z, Ma J Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017 Nano Lett. 17 2561Google Scholar

    [24]

    Peng W, Park S Y, Roh C J, Mun J, Ju H, Kim J, Ko E K, Liang Z G, Hahn S, Zhang J F, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T H, Kim C, Wang L F, Kim M Y, Lee J S, Noh T W, Lee D 2024 Nat. Phys. 20 450Google Scholar

    [25]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [26]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [27]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [28]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [29]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [30]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [31]

    Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar

    [32]

    Wang Z Z, Qi W H, Bi J C, Li X Y, Chen Y, Yang F, Cao Y W, Gu L, Zhang Q H, Wang H H, Zhang J D, Guo J D, Liu X R 2022 Chin. Phys. B 31 126801Google Scholar

  • 图 1  (111)-SRO/CoPt异质结构的表征结果 (a) SRO/CoPt薄膜异质结构示意图; (b) SRO薄膜表面的原位反射高能电子衍射(RHEED)图像及原子力显微镜(AFM)图像, 均方根粗糙度约为0.135 nm; (c) 在STO (111)衬底上生长的SRO薄膜的XRD $ \theta $-2$ \theta $ 扫描结果, 插图为SRO和STO的(222)峰附近范围的放大图; (d) SRO薄膜(132)峰附近的倒易空间映射结果; (e) CoPt的面外MOKE表征

    Fig. 1.  SRO/CoPt heterostructure: (a) Schematic diagram of the SRO/CoPt thin film heterostructure; (b) in-situ reflection high-energy electron diffraction (RHEED) image and atomic force microscopy (AFM) image of the SRO surface, the root-mean-square roughness is about 0.135 nm; (c) XRD $ \theta $-2$ \theta $ scan results of the SRO film grown on the STO (111) substrate, the inset is an enlarged view of the region near the (222) peaks of SRO and STO; (d) X-ray reciprocal space mapping (RSM) results of the SRO film; (e) out-of-plane MOKE characterization of CoPt.

    图 2  SRO/CoPt样品在纵向场HL下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流I沿x方向施加, 外加磁场HL沿x (纵向)方向施加; (b) 施加垂直于平面的变化磁场HZ测得的反常霍尔电阻RAHE; (c) I = 1.5 mA下, 一次和(d)二次谐波霍尔电压信号随纵向场HL变化的情况; (e) SOT有效场HDL随电流密度JSRO (分流至SRO的电流密度)的变化; (f) 室温下SRO/CoPt的面外SQUID测量, 由此得出饱和磁化强度Ms

    Fig. 2.  Harmonic Hall voltage measurements of the SRO/CoPt sample under a longitudinal field HL. (a) Schematic diagram of the sample measurement. The AC current I is applied along the x-direction. The external magnetic field HL is applied along the x (longitudinal) direction. (b) Anomalous Hall resistance RAHE measured by applying a magnetic field HZ perpendicular to the plane. (c) First and (d) second harmonic Hall voltage signals as a function of the longitudinal field HL at I = 1.5 mA. (e) Variation of the SOT effective field HDL with the current density JSRO (current density shunted to SRO). (f) Out-of-plane SQUID measurement of SRO/CoPt at room temperature, from which the saturation magnetization Ms is obtained.

    图 3  SRO/CoPt样品在横向场HT下的谐波霍尔电压测量 (a) 样品测量的示意图, 交流电流I沿x方向施加, 外加磁场H沿y (横向)方向施加; (b) I = 2.5 mA下, 在横向磁场HT下测得的二次谐波霍尔电压信号; (c) SOT有效场HFL随电流密度JSRO (分流至SRO的电流密度)的变化

    Fig. 3.  Harmonic Hall voltage measurements of the SRO/CoPt sample under a transverse field HT: (a) Schematic diagram of the sample measurement, the AC current I is applied along the x-direction, the external magnetic field H is applied along the y (transverse) direction; (b) second harmonic Hall voltage signal measured under the transverse magnetic field HT at I = 2.5 mA; (c) variation of the SOT effective field HFL with the current density JSRO (current density shunted to SRO).

    图 4  (111)-SRO/CoPt异质结构由自旋轨道力矩(SOT)驱动的垂直磁化翻转 (a)生长了电极的Hall bar的显微镜图像及磁矩翻转测量的几何图示, 脉冲电流Iwrite用于翻转磁化状态, 而直流恒定电流IDC用于读取(上图), Iwrite(±12 mA)和 Iread(200 μA)的序列图(下); (b) 样品在不同外加磁场Hx下, Iwrite驱动的磁化翻转, RH表示霍尔电阻的变化

    Fig. 4.  Perpendicular magnetization switching driven by spin-orbit torque (SOT) in the [111]-SRO/CoPt sample: (a) Microscope image of the Hall bar with electrodes and a schematic diagram of the magnetization switching measurement geometry. Pulsed current Iwrite is used to switch the magnetization state, while DC constant current IDC is used to read (Top), sequence diagram of Iwrite (±12 mA) and Iread (200 μA) (Below); (b) the magnetization of the sample driven by Iwrite switching under different applied magnetic fields Hx, RH indicates the change in Hall resistance.

    Baidu
  • [1]

    Sasikanth M, Dmitri E N, Ian A Y 2018 Nat. Phys. 14 338Google Scholar

    [2]

    Dieny B, Prejbeanu I L, Garello K, Gambardella P, Freitas P, Lehndorff R, Raberg W, Ebels U, Demokritov S O, Akerman J, Deac A, Pirro P, Adelmann C, Anane A, Chumak A V, Hirohata A, Mangin S, Valenzuela S O, Cengiz Onbaşlı M, d’Aquino M, Prenat G, Finocchio G, Lopez-Diaz L, Chantrell R, Chubykalo-Fesenko O, Bortolotti P 2020 Nat. Electron. 3 446Google Scholar

    [3]

    Manchon A, Železný J, M. Miron I, Jungwirth T, Sinova J, Thiaville A, Garello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [4]

    Miron I M, Garello K, Gaudin G, Zermatten P-J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [5]

    Shao Q, Li P, Liu L, Yang H, Fukami S, Razavi A, Wu H, Wang K, Freimuth F, Mokrousov Y, Stiles M D, Emori S, Hoffmann A, Åkerman J, Roy K, Wang J, Yang S, Garello K, Zhang W 2021 IEEE T. Magn. 57 800439

    [6]

    Chen H, Yi D 2021 APL Mater. 9 060908Google Scholar

    [7]

    劳斌, 郑轩, 李晟, 汪志明 2023 72 097702Google Scholar

    Lao B, Zheng X, Li S, Wang Z M 2023 Acta Phys. Sin. 72 097702Google Scholar

    [8]

    Nan T, Anderson T J, Gibbons J, Hwang K, Campbell N, Zhou H, Dong Y Q, Kim G Y, Shao D F, Paudel T R, Reynolds N, Wang X J, Sun N X, Tsymbal E Y, Choi S Y, Rzchowski, Kim Y B, Ralph D C, Eom C B 2018 Proc. Natl. Acad. Sci. 33 16186

    [9]

    Everhardt A S, DC M , Huang X, Sayed S, Gosavi T A, Tang Y, Lin C, Manipatruni S, Young I A, Datta S, Wang J, and Ramesh R 2019 Phys. Rev. Mater. 3 051201

    [10]

    Wang H L, Meng K Y, Zhang P X, Hou J T, Finley J, Han J H, Yang F Y, Liu L Q 2019 Appl. Phys. Lett. 114 232406Google Scholar

    [11]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939Google Scholar

    [12]

    Wahler M, Homonnay N, Richter T, Müller A, Eisenschmidt C, Fuhrmann B, Schmidt G 2016 Sci. Rep. 6 28727Google Scholar

    [13]

    Ou Y X, Wang Z, Chang C S, Nair H P, Paik H J, Reynolds N, Ralph D C, Muller D A, Schlom D G, Buhrman R A 2019 Nano Lett. 19 3663Google Scholar

    [14]

    Emori S, Alaan U S, Gray M T, Sluka V, Chen Y, Kent A, Suzuki Y 2016 Phys. Rev. B 94 224423Google Scholar

    [15]

    Eom C B, Cava R J, Fleming R M, Phillips J M, Vandover R B, Marshall J H, Hsu J W P, Krajewski J J, Peck W F 1992 Science 258 1766Google Scholar

    [16]

    Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A, Beasley M R, 2012 Rev. Mod. Phys. 84 253Google Scholar

    [17]

    Wei J W, Zhong H, Liu J Z, Wang X, Meng F Q, Xu H J, Liu Y Z, Luo X, Zhang Q H, Guang Y, Feng J F, Zhang J, Yang L H, Ge C, Gu L, Jin K J, Yu G Q, Han X F 2021 Adv. Funct. Mater. 31 2100380Google Scholar

    [18]

    Zhou J, Shu X Y, Lin W N, Shao D F, Chen S H, Liu L, Yang P, Tsymbal E Y, Chen J S 2021 Adv. Mater. 33 2007114Google Scholar

    [19]

    Li S, Lao B, Lu Z X, Zheng X, Zhao K N, Gong L G, Tang T, Wu K Y, Li R W, Wang Z M 2023 Phys. Rev. Mater. 7 024418Google Scholar

    [20]

    Dagotto E 2005 Science 309 257Google Scholar

    [21]

    Ahn C, Cavalleri A, Georges A, Ismail-Beigi S, Millis A J, Triscone J-M 2021 Nat. Mater. 20 1462Google Scholar

    [22]

    Lu Z X, Yang Y J, Wen L J, Feng J T, Lao B, Zheng X, Li S, Zhao K N, Cao B S, Ren Z L, Song D S, Du H F, Guo Y Y, Zhong Z C, Hao X F, Wang Z M, Li R W 2022 NPJ Flex. Electron. 6 9Google Scholar

    [23]

    Wang Z M, Zhong Z C, MckeownWalker S, Ristic Z, Ma J Z, Bruno F Y, Ricco S, Sangiovanni G, Eres G, Plumb N C, Patthey L, Shi M, Mesot J, Baumberger F, Radovic M 2017 Nano Lett. 17 2561Google Scholar

    [24]

    Peng W, Park S Y, Roh C J, Mun J, Ju H, Kim J, Ko E K, Liang Z G, Hahn S, Zhang J F, Sanchez A M, Walker D, Hindmarsh S, Si L, Jo Y J, Jo Y, Kim T H, Kim C, Wang L F, Kim M Y, Lee J S, Noh T W, Lee D 2024 Nat. Phys. 20 450Google Scholar

    [25]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425Google Scholar

    [26]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240Google Scholar

    [27]

    Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y, Wang K Y 2016 Sci. Rep. 6 20778Google Scholar

    [28]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [29]

    Zhu L, Ralph D C, Buhrman R A 2021 Appl. Phys. Rev. 8 031308Google Scholar

    [30]

    Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blugel S, Auffret S, Boulle O, Gaudin G, Gambardella P 2013 Nat. Nanotechnol. 8 587Google Scholar

    [31]

    Jin F, Gu M Q, Ma C, Guo E J, Zhu J, Qu L L, Zhang Z X, Zhang K X, Xu L Q, Chen B B, Chen F, Gao G Y, Rondinelli J M, Wu W B 2020 Nano Lett. 20 1131Google Scholar

    [32]

    Wang Z Z, Qi W H, Bi J C, Li X Y, Chen Y, Yang F, Cao Y W, Gu L, Zhang Q H, Wang H H, Zhang J D, Guo J D, Liu X R 2022 Chin. Phys. B 31 126801Google Scholar

  • [1] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转.  , 2024, 73(1): 018501. doi: 10.7498/aps.73.20231836
    [2] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展.  , 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [3] 刘冰心, 李宗良. CrO2单层: 一种兼具高居里温度和半金属特性的二维铁磁体.  , 2024, 73(10): 106102. doi: 10.7498/aps.73.20240246
    [4] 郭晓庆, 王强, 薛海斌. 类场矩诱导的可调零场自旋转移力矩纳米振荡器.  , 2023, 72(16): 167501. doi: 10.7498/aps.72.20230628
    [5] 焦宸, 简粤, 张爱霞, 薛具奎. 自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控.  , 2023, 72(6): 060302. doi: 10.7498/aps.72.20222306
    [6] 陈盛如, 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳. 钴氧化物中晶格与自旋的关联耦合效应研究.  , 2023, 72(9): 097502. doi: 10.7498/aps.72.20230206
    [7] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展.  , 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [8] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源.  , 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] 赵生盛, 徐玉增, 陈俊帆, 张力, 侯国付, 张晓丹, 赵颖. 免掺杂、非对称异质接触晶体硅太阳电池的研究进展.  , 2019, 68(4): 048801. doi: 10.7498/aps.68.20181991
    [10] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控.  , 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [11] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构.  , 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [12] 宋建军, 包文涛, 张静, 唐昭焕, 谭开洲, 崔伟, 胡辉勇, 张鹤鸣. (100)Si基应变p型金属氧化物半导体[110]晶向电导率有效质量双椭球模型.  , 2016, 65(1): 018501. doi: 10.7498/aps.65.018501
    [13] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [14] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 吕懿, 王斌, 王冠宇. 应变Si n型金属氧化物半导体场效应晶体管电荷模型.  , 2014, 63(1): 017101. doi: 10.7498/aps.63.017101
    [15] 赵赓, 程晓曼, 田海军, 杜博群, 梁晓宇, 吴峰. V2O5电极修饰对C60/Pentacene双层异质结场效应晶体管性能的影响.  , 2012, 61(21): 218502. doi: 10.7498/aps.61.218502
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究.  , 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [18] 谭明秋, 陶向明, 何军辉. SrRuO3的电子结构与磁性研究.  , 2001, 50(11): 2203-2207. doi: 10.7498/aps.50.2203
    [19] 胡文英, 曾雉, 郑庆祺, 黄美纯. 电子间关联作用对过渡金属氧化物磁矩的影响.  , 1995, 44(2): 273-279. doi: 10.7498/aps.44.273
    [20] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型.  , 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
计量
  • 文章访问数:  2014
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 修回日期:  2024-03-27
  • 上网日期:  2024-04-10
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map