-
对大尺寸三维超声换能器系统的耦合振动进行有效控制, 优化系统的性能, 一直都是功率超声领域亟待解决的难题. 研究发现, 一些声子晶体槽、孔结构可以对大尺寸换能器系统的横向振动进行抑制, 提高系统振幅分布均匀度, 且可以通过改变声子晶体结构的配置参数人为地实现对大尺寸三维超声振动系统性能的调控. 但过多的设计参数必然会增加系统设计的复杂度, 且目前大尺寸三维超声换能器系统的优化设计依赖于经验试错法, 设计效率和成功率较低, 性能也无法保证. 研究引入同质位错、点缺陷结构对大尺寸三维超声振动系统进行优化设计, 并利用数据分析技术评价了同质位错、点缺陷结构的配置对系统辐射面的纵向位移振幅、振幅分布均匀度、辐射声功率、工作带宽等的影响规律, 建立了同质位错结构、近周期缺陷结构的结构参数——大尺寸超声换能器系统性能的预测模型, 实现了对大尺寸功率超声换能器系统的智能设计, 提高了设计效率和成功率, 降低了设计成本.
-
关键词:
- 耦合振动 /
- 大尺寸三维超声振动系统 /
- 同质位错 /
- 点缺陷 /
- 智能化设计
Large-scale three-dimensional ultrasonic vibration systems are susceptible to the influence of coupled vibration, resulting in a series of problems such as increased energy loss, small longitudinal displacement amplitude of the radiation surface, and uneven distribution of longitudinal displacement amplitude, which can seriously affect the working efficiency of ultrasonic processing system. How to effectively control the coupled vibration of large-scale three-dimensional ultrasonic transducer systems and optimize their performance has become an urgent problem in the field of power ultrasound. The research has found that some phononic crystal slots and point defect structures can suppress the lateral vibration of large-scale transducer systems, improve the uniformity of system amplitude distribution, and artificially regulate the performance of large-scale three-dimensional ultrasonic vibration systems by changing the configuration parameters of phononic crystal structures. However, excessive design parameters will inevitably increase the complexity of system design, and, currently, the optimization design of large-scale three-dimensional ultrasonic transducer systems relies on empirical trial and error methods which has low design efficiency and low success rate, and cannot guarantee the system performance. Therefore, in the study, homogeneous dislocations and point defect structures are introduced to optimize the design of large-scale three-dimensional ultrasonic vibration systems. Data analysis techniques are used to evaluate the influences of the configuration of homogeneous dislocations and point defect structures on the longitudinal displacement amplitude, amplitude distribution uniformity, radiated sound power, working bandwidth of the system’s radiation surface. And a predictive model for the performance of large-scale ultrasonic transducer system with homogeneous dislocation structure and near periodic defect structure is established, which can achieve intelligent design of large-scale power ultrasonic transducer system, improve design efficiency and success rate, and reduce the design cost.-
Keywords:
- coupled vibration /
- large-scale three-dimensional ultrasonic vibration system /
- homogeneous dislocations /
- point defects /
- intelligent design
[1] 周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar
Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar
[2] Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar
[3] Lin S 1995 Appl. Acous. 44 249Google Scholar
[4] Ren S C 1983 Acta Acus. 1 152Google Scholar
[5] Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar
[6] 俞宏沛 1994 声学与电子工程 1994 9
Yu H P 1994 Acous. Elec. Engi. 1994 9
[7] 周利生 1993 声学与电子工程 1993 28
Zhou L S 1993 Acous. Elec. Engi. 1993 28
[8] 周利生 1993 声学与电子工程 1993 16
Zhou L S 1993 Acous. Elec. Engi. 1993 16
[9] 林书玉, 张福成 1992 声学学报 1992 451
Lin S Y, Zhang F C 1991 J. Acous. 1992 451
[10] 林书玉, 张福成 1991 应用声学 1991 10Google Scholar
Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar
[11] 林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar
Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar
[12] Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar
[13] Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar
[14] Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar
[15] Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar
[16] Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar
[17] Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar
[18] Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar
[19] 程存弟 1991 应用声学 10 44Google Scholar
Chen C D 1991 Appl. Acous. 10 44Google Scholar
[20] 林书玉, 张福成 1992 声学技术 11 24Google Scholar
Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar
[21] 梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar
Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar
[22] 梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar
Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar
[23] 成桢, 郭建中 2010 声学技术 29 103
Chen Z, Guo J Z 2010 Tech. Acous. 29 103
[24] 赵甜甜, 林书玉, 段祎林 2018 67 024303Google Scholar
Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar
[25] 王莎, 林书玉 2019 68 173Google Scholar
Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar
[26] Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar
[27] Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar
[28] Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar
Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar
[29] Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 2 517]Google Scholar
Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar
[30] 何姣 2013 博士学位论文 (昆明: 云南师范大学)
He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University
[31] 魏琦, 程营, 刘晓峻 2011 60 124301Google Scholar
Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar
-
表 1 系统的材料和结构参数表
Table 1. Material and structural parameter table of the system.
部件 材料属性 形状 大端半径(长)/mm 小端半径(宽)/mm 高度/mm 换能器前盖板 Aluminum 6063-T83 等截面圆柱 25 25 56 换能器压电陶瓷片(两片) PZT-4 等截面圆环 25 25 6 换能器后盖板 Aluminum 6063-T83 等截面圆柱 25 25 56 复合变幅杆圆柱部分 Aluminum 6063-T83 等截面圆柱 25 25 77 复合变幅杆圆锥部分 Aluminum 6063-T83 圆锥 25 20 45 工具头 Aluminum 6063-T83 长方体 180 106 111 -
[1] 周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar
Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar
[2] Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar
[3] Lin S 1995 Appl. Acous. 44 249Google Scholar
[4] Ren S C 1983 Acta Acus. 1 152Google Scholar
[5] Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar
[6] 俞宏沛 1994 声学与电子工程 1994 9
Yu H P 1994 Acous. Elec. Engi. 1994 9
[7] 周利生 1993 声学与电子工程 1993 28
Zhou L S 1993 Acous. Elec. Engi. 1993 28
[8] 周利生 1993 声学与电子工程 1993 16
Zhou L S 1993 Acous. Elec. Engi. 1993 16
[9] 林书玉, 张福成 1992 声学学报 1992 451
Lin S Y, Zhang F C 1991 J. Acous. 1992 451
[10] 林书玉, 张福成 1991 应用声学 1991 10Google Scholar
Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar
[11] 林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar
Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar
[12] Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar
[13] Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar
[14] Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar
[15] Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar
[16] Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar
[17] Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar
[18] Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar
[19] 程存弟 1991 应用声学 10 44Google Scholar
Chen C D 1991 Appl. Acous. 10 44Google Scholar
[20] 林书玉, 张福成 1992 声学技术 11 24Google Scholar
Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar
[21] 梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar
Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar
[22] 梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar
Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar
[23] 成桢, 郭建中 2010 声学技术 29 103
Chen Z, Guo J Z 2010 Tech. Acous. 29 103
[24] 赵甜甜, 林书玉, 段祎林 2018 67 024303Google Scholar
Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar
[25] 王莎, 林书玉 2019 68 173Google Scholar
Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar
[26] Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar
[27] Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar
[28] Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar
Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar
[29] Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 2 517]Google Scholar
Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar
[30] 何姣 2013 博士学位论文 (昆明: 云南师范大学)
He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University
[31] 魏琦, 程营, 刘晓峻 2011 60 124301Google Scholar
Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar
计量
- 文章访问数: 1902
- PDF下载量: 63
- 被引次数: 0