-
大气压等离子体射流(APPJ)能产生富含活性粒子的等离子体羽, 在众多领域具有广泛的应用前景. 从应用角度考虑, 如何产生大尺度弥散等离子体羽是APPJ研究的热点之一. 目前, 利用惰性气体APPJ已经能产生令人满意的大尺度等离子体羽, 但从经济性上考虑, 如何产生大尺度空气等离子体羽更具有应用价值. 针对于此, 本工作设计了一个具有辅助放电的APPJ, 产生了大尺度刷形空气等离子体羽. 结果表明, 刷状空气等离子体羽可以在一定电压峰值(Vp)内产生, 并且随着Vp增大等离子体羽的长度和发光强度都增大. 电压和发光信号波形表明, 每半个电压周期最多会有一次放电. 每半个电压周期的放电概率和光脉冲的强度都随着Vp增大而增大, 但放电起始时刻的电压值会随着Vp增大而降低. 高速影像研究表明弥散刷形空气等离子体羽和小尺度空气等离子体羽的产生机制类似, 均源于分叉正流光的时间叠加. 此外, 采集了刷形空气等离子体羽的发射光谱, 并利用其对放电的电子温度、电子密度、分子振动温度和气体温度进行了研究. 结果表明, 等离子体羽的气体温度较低, 且基本不随Vp变化. 然而电子密度、电子温度和分子振动温度均随着Vp增大而升高. 利用激光诱导荧光光谱技术研究了等离子体羽的OH浓度, 发现OH分布较为均匀, 且其浓度随着Vp增大而增大. 最后, 对这些变化规律进行定性分析.Atmospheric pressure plasma jet (APPJ) can produce plasma plumes rich in active species, which has a wide scope of applications. From the perspective of applications, it is one of the hot issues in APPJ research to generate a diffuse plasma plume on a large scale. At present, large-scale plasma plume has been produced by noble working gases, which is more economic and valuable if it is reproduced by air used as the working gas. In this work, an APPJ with an auxiliary discharge is proposed, with which a large-scale air plasma plume with a brush shape is produced. Results indicate that the brush-shaped air plume can exist by changing voltage amplitude (Vp) in a certain range. The length and brightness of the plasma plume increase with Vp increasing. The waveforms of voltage and light emission signalindicate that the discharge can start at most once within half a cycle of applied voltage. The probability of discharge and the intensity of light emission pulse for each half a voltage cycle increase with Vp increasing, but the voltage value at the discharge moment decreases with Vp increasing. High-speed imaging study shows that the generation mechanisms of diffuse brush-shaped air plasma plumes and small-scale air plasma are similar, both originating from the temporal superposition of bifurcated normal flow light. In addition, optical emission spectra from the brush-shaped air plasma plume are utilized to study electron temperature, electron density, molecular vibrational temperature, and gas temperature. With Vp increasing, gas temperature is low and almost unchanged, while electron density, electron temperature, and molecular vibrational temperature increase. In addition, OH concentration of the plasma plume is investigated by laser-induced fluorescence, indicating that OH is uniformly distributed, and its concentration increases with the Vp increasing. All these results mentioned above are qualitatively analyzed.
-
Keywords:
- plasma jet /
- air plasma plume /
- optical emission spectrum /
- plasma parameters
[1] Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar
[2] Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar
[3] Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar
[4] Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar
[5] Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar
[6] Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar
[7] Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603
[8] Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar
[9] Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar
[10] Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar
[11] Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar
[12] Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar
[13] Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar
[14] Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar
[15] Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar
[16] Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar
[17] Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar
[18] Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar
[19] Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar
[20] Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar
[21] Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar
[22] Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar
[23] Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar
[24] Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar
[25] Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar
[26] Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar
[27] Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar
[28] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar
Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar
[29] Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar
[30] Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar
[31] Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar
[32] Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar
[33] Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar
[34] Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar
[35] Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar
[36] Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar
[37] Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar
[38] Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar
[39] Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar
[40] Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar
[41] Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar
[42] Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar
[43] Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar
[44] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar
[45] 卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar
Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar
[46] Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar
[47] Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar
[48] Lichten W 1957 J. Chem. Phys. 26 306Google Scholar
[49] Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar
[50] Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60
[51] Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar
[52] Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar
[53] Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar
[54] Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar
[55] Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar
[56] Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar
[57] Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar
[58] Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar
-
-
[1] Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar
[2] Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar
[3] Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar
[4] Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar
[5] Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar
[6] Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar
[7] Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603
[8] Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar
[9] Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar
[10] Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar
[11] Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar
[12] Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar
[13] Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar
[14] Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar
[15] Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar
[16] Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar
[17] Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar
[18] Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar
[19] Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar
[20] Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar
[21] Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar
[22] Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar
[23] Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar
[24] Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar
[25] Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar
[26] Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar
[27] Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar
[28] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 70 155201Google Scholar
Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar
[29] Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar
[30] Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar
[31] Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar
[32] Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar
[33] Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar
[34] Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar
[35] Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar
[36] Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar
[37] Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar
[38] Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar
[39] Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar
[40] Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar
[41] Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar
[42] Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar
[43] Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar
[44] Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar
[45] 卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar
Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar
[46] Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar
[47] Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar
[48] Lichten W 1957 J. Chem. Phys. 26 306Google Scholar
[49] Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar
[50] Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60
[51] Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar
[52] Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar
[53] Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar
[54] Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar
[55] Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar
[56] Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar
[57] Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar
[58] Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar
计量
- 文章访问数: 1337
- PDF下载量: 46
- 被引次数: 0