搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子信息科技的发展现状与展望

潘建伟

引用本文:
Citation:

量子信息科技的发展现状与展望

潘建伟

Quantum information technology: Current status and prospects

Pan Jian-Wei
PDF
HTML
导出引用
  • 20世纪初, 以原子能、半导体、激光、核磁共振、超导和全球卫星定位系统等重大技术发明为标志性成果的第一次量子革命, 促进了物质文明的巨大进步, 从根本上改变了人类的生活方式和社会面貌. 自20世纪90年代以来, 量子调控技术的巨大进步, 使得以量子信息科学为代表的量子科技突飞猛进, 标志着第二次量子革命的兴起. 量子信息科技包括量子通信、量子计算、量子精密测量等方面, 为保障信息传输安全、提高运算速度、提升测量精度等提供了革命性解决方案, 可为国家安全和国民经济高质量发展提供关键支撑. 经过近30年的发展, 我国在量子信息科技领域整体上已经实现了从跟踪、并跑到部分领跑的飞跃, 在量子通信的研究和应用方面处于国际领先地位; 在量子计算方面牢固占据国际第一方阵; 在量子精密测量的多个方向进入国际领先或先进水平. 当前, 需要根据国家战略需求和国际竞争态势, 做好未来5—10年我国在量子信息领域的发展重点研判, 率先建立下一代安全、高效、自主、可控的信息技术体系.
    In the early decades of the 20th century, the inception of quantum mechanics catalyzed the first quantum revolution, resulting in groundbreaking technological advances, such as nuclear energy, semiconductors, lasers, nuclear magnetic resonance, superconductivity, and global satellite positioning systems. These innovations have promoted significant progress in material civilization, fundamentally changed the way of life and societal landscape of humanity. Since the 1990s, quantum control technology has made significant strides forward, ushering in a rapid evolution of quantum technologies, notably exemplified by quantum information science. This encompasses domains such as quantum communication, quantum computing, and quantum precision measurement, offering paradigm-shifting solutions for enhancing information transmission security, accelerating computational speed, and elevating measurement precision. These advances hold the potential to provide crucial underpinning for national security and the high-quality development of the national economy. The swift progression of quantum information technology heralds the advent of the second quantum revolution. Following nearly three decades of concerted efforts, China’s quantum information technology field as a whole has achieved a leap. Specifically, China presently assumes a prominent international role in both the research and practical application of quantum communication, leading the global domain in quantum computing, and achieving international preeminence or advanced standing across various facets of quantum precision measurement. Presently, it is imperative to conduct a comprehensive assessment of the developmental priorities in the realm of quantum information in China for the forthcoming 5 to 10 years, in alignment with national strategic priorities and the evolving landscape of international competition. This will enable the proactive establishment of next-generation information technology systems that are secure, efficient, autonomous, and controllable.
      通信作者: 潘建伟, pan@ustc.edu.cn
      Corresponding author: Pan Jian-Wei, pan@ustc.edu.cn
    [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [4]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [5]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [8]

    D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [9]

    Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [10]

    Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar

    [11]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [12]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [13]

    Benioff P 1980 J. Stat. Phys. 22 563Google Scholar

    [14]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [15]

    Preskill J 2018 Quantum 2 79Google Scholar

    [16]

    Shor P W 1999 Siam Rev. 41 303Google Scholar

    [17]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar

    [18]

    Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar

    [19]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [20]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar

    [22]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [23]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [24]

    Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar

    [25]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [26]

    Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [27]

    Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar

    [28]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [29]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [30]

    Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar

    [31]

    Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar

    [32]

    Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar

    [33]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [34]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [35]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [36]

    Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar

    [37]

    Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar

    [38]

    Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar

    [39]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [40]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar

    [41]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [42]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [43]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [44]

    Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [45]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [46]

    Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar

    [47]

    Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar

    [48]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [49]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [50]

    Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [51]

    Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar

    [52]

    Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar

    [53]

    Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar

    [54]

    Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar

    [55]

    Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar

    [56]

    Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464

    [57]

    Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447

    [58]

    Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [59]

    Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar

    [60]

    Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar

    [61]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [62]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [63]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [64]

    Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015

    [65]

    Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar

    [66]

    Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar

    [67]

    Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar

    [68]

    Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar

    [69]

    Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [70]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [71]

    Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar

    [72]

    Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar

    [73]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [74]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [75]

    Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar

    [76]

    Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar

    [77]

    H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21

    [78]

    H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01

    [79]

    Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29

    [80]

    Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26

    [81]

    Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26

    [82]

    French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17

    [83]

    National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14

    [84]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [85]

    Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar

    [86]

    Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar

  • 图 1  量子计算的3个发展阶段

    Fig. 1.  Three steps of achieving universal quantum computing.

    图 2  “九章”系列光量子计算原型机

    Fig. 2.  “Jiuzhang” series photonics quantum computing prototype.

    图 3  “祖冲之”系列超导量子计算原型机

    Fig. 3.  “Zuchongzhi” series superconducting quantum computing prototype.

    图 4  我国在国际上首次实现百公里级自由空间时间频率传递[65]

    Fig. 4.  Free-space dissemination of time and frequency with 10–19 instability over 113 km[65].

    Baidu
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, December 4, 1984 pp175–179

    [2]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [3]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [4]

    Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dušek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [5]

    Gisin N 2015 Front. Phys. 10 100307Google Scholar

    [6]

    Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012Google Scholar

    [7]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wotters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [8]

    D Bouwmeester, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [9]

    Boschi D, Branca S, De Martini F, Hardy L, Popescu S 1998 Phys. Rev. Lett. 80 1121Google Scholar

    [10]

    Zukowski M, Zeilinger A, Horne M A, Ekert A K 1993 Phys Rev. Lett. 71 4287Google Scholar

    [11]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [12]

    Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar

    [13]

    Benioff P 1980 J. Stat. Phys. 22 563Google Scholar

    [14]

    Grover L K 1997 Phys. Rev. Lett. 79 325Google Scholar

    [15]

    Preskill J 2018 Quantum 2 79Google Scholar

    [16]

    Shor P W 1999 Siam Rev. 41 303Google Scholar

    [17]

    Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140Google Scholar

    [18]

    Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43Google Scholar

    [19]

    Ren J G, Xu P, Yong H L, et al. 2017 Nature 549 70Google Scholar

    [20]

    Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501Google Scholar

    [21]

    Xu P, Ma Y Q, Ren J G, et al. 2019 Science 366 132Google Scholar

    [22]

    Chen Y A, Zhang Q, Chen T Y, et al. 2021 Nature 589 214Google Scholar

    [23]

    Zhong H S, Wang H, Deng Y H, et al. 2020 Science 370 1460Google Scholar

    [24]

    Madsen L S, Laudenbach F, Askarani M F, et al. 2022 Nature 606 75Google Scholar

    [25]

    Zhong H S, Deng Y H, Qin J, et al. 2021 Phys. Rev. Lett. 127 180502Google Scholar

    [26]

    Deng Y H, Gu Y C, Liu H L, et al. 2023 Phys. Rev. Lett. 131 150601Google Scholar

    [27]

    Deng Y H, Gong S Q, Gu Y C, et al. 2023 Phys. Rev. Lett. 130 190601Google Scholar

    [28]

    Gong M, Wang S, Zha C, et al. 2021 Science 372 948Google Scholar

    [29]

    Wu Y L, Bao W S, Cao S, et al. 2021 Phys. Rev. Lett. 127 180501Google Scholar

    [30]

    Pan F, Chen K, Zhang P 2022 Phys. Rev. Lett. 129 090502Google Scholar

    [31]

    Zhang X, Jiang W J, Deng J F, et al. 2022 Nature 607 468Google Scholar

    [32]

    Cao S R, Wu B J, Chen F S, et al. 2023 Nature 619 738Google Scholar

    [33]

    Yang B, Sun H, Huang C J, Wang H Y, Deng Y, Dai H N, Yuan Z S, Pan J W 2020 Science 369 550Google Scholar

    [34]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [35]

    Wang Z Y, Cheng X C, Wang B Z, Zhang J Y, Lu Y H, Yi C R, Niu S, Deng Y, Liu X J, Chen S, Pan J W 2021 Science 372 271Google Scholar

    [36]

    Yang H, Zhang D C, Liu L, Liu Y X, Nan J, Zhao B, Pan J W 2019 Science 363 261Google Scholar

    [37]

    Yang H, Wang X Y, Su Z, Cao J, Zhang D C, Rui J, Zhao B, Bai C L, Pan J W 2022 Nature 602 229Google Scholar

    [38]

    Yang H, Cao J, Su Z, Rui J, Zhao B, Pan J W 2022 Science 378 1009Google Scholar

    [39]

    Yang B, Sun H, Ott R, Wang H Y, Zache T V, Halimeh J C, Yuan Z S, Hauke P, Pan J W 2020 Nature 587 392Google Scholar

    [40]

    Zhou Z Y, Su G X, Halimeh J C, Ott R, Sun H, Hauke P, Yang B, Yuan Z S, Berges J, Pan J W 2022 Science 377 311Google Scholar

    [41]

    Li X, Luo X, Wang S, Xie K, Liu X P, Hu H, Chen Y A, Yao X C, Pan J W 2022 Science 375 528Google Scholar

    [42]

    Zhang X T, Chen Y, Wu Z M, Wang J, Fan J J, Deng S J, Wu H B 2021 Science 373 1359Google Scholar

    [43]

    Huang Q, Yao R X, Liang L B, Wang S, Zheng Q P, Li D P, Xiong W, Zhou X J, Chen W L, Chen X Z, Hu J Z 2021 Phys. Rev. Lett. 127 200601Google Scholar

    [44]

    Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, Li X P 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [45]

    Zhang D F, Gao T Y, Zou P, Kong L R, Li R Z, Shen X, Chen X L, Peng S G, Zhan M S, Pu H, Jiang K J 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [46]

    Cui Y, Shen C Y, Deng M, Dong S, Chen C, Lü R, Gao B, Tey M K, You L 2017 Phys. Rev. Lett. 119 203402Google Scholar

    [47]

    Deng S J, Diao P P, Li F, Yu Q L, Yu S, Wu H B 2018 Phys. Rev. Lett. 120 125301Google Scholar

    [48]

    Deng S J, Shi Z Y, Diao P P, Yu Q L, Zhai H, Qi R, Wu H B 2016 Science 353 371Google Scholar

    [49]

    Xie D Z, Deng T S, Xiao T, Gou W, Chen T, Yi W, Yan B 2020 Phys. Rev. Lett. 124 050502Google Scholar

    [50]

    Wang P, Luan C, Qiao M, Um M, Zhang J, Wang Y, Yuan X, Gu M, Zhang J, Kim K 2021 Nat. Commun. 12 233Google Scholar

    [51]

    Mei Q X, Li B W, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys. Rev. Lett. 128 160504Google Scholar

    [52]

    Li B W, Mei Q X, Wu Y K, Cai M L, Wang Y, Yao L, Zhou Z C, Duan L M 2022 Phys Rev. Lett. 129 140501Google Scholar

    [53]

    Yang H X, Ma J Y, Wu Y K, Wang Y, Cao M M, Guo W X, Huang Y Y, Feng L, Zhou Z C, Duan L M 2022 Nat. Phys. 18 1058Google Scholar

    [54]

    Zhang Q, Guo Y H, Ji W T, Wang M Q, Yin J, Kong F, Lin Y H, Yin C M, Shi F Z, Wang Y, Du J F 2021 Nat. Commun. 12 1529Google Scholar

    [55]

    Wang M Q, Sun H Y, Ye X Y, Yu P, Liu H Y, Zhou J W, Wang P F, Shi F Z, Wang Y, Du J F 2022 Sci. Adv. 8 eabn9573Google Scholar

    [56]

    Beullens W 2022 Annual International Cryptology Conference Santa Barbara, CA, USA, August 15–18, 2022 p464

    [57]

    Castryck W, Decru T 2023 42nd Annual International Conference on the Theory and Applications of Cryptographic Techniques Lyon, France, April 23–27, 2023 pp423–447

    [58]

    Lu B K, Sun Z, Yang T, et al. 2022 Chin. Phys. Lett. 39 080601Google Scholar

    [59]

    Zhang A, Xiong Z X, Chen X T, Jiang Y Y, Wang J Q, Tian C C, Zhu Q, Wang B, Xiong D Z, He L X, Ma L S, Lü B L 2022 Metrologia 59 065009Google Scholar

    [60]

    Lu X T, Guo F, Wang Y B, Xu Q F, Zhou C H, Xia J J, Wu W J, Chang H 2023 Metrologia 60 015008Google Scholar

    [61]

    Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U, Ye J 2019 Nat. Photon. 13 714Google Scholar

    [62]

    Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A, Ye J 2022 Nature 602 420Google Scholar

    [63]

    Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H, Katori H 2020 Nat. Photon. 14 411Google Scholar

    [64]

    Ohmae N, Takamoto M, Takahashi Y, et al. 2021 Advanced Quantum Technologies 4 2100015

    [65]

    Shen Q, Guan J Y, Ren J G, et al. 2022 Nature 610 661Google Scholar

    [66]

    Fan W F, Quan W, Liu F, et al. 2019 Chinese Phys. B 28 110701Google Scholar

    [67]

    Yang Y H, Chen D Y, Jin W, Quan W, Liu F, Fang J C 2019 IEEE Access 7 148176Google Scholar

    [68]

    Xie H T, Chen B, Long J B, Xue C, Chen L K, Chen S 2020 Chin. Phys. B 29 093701Google Scholar

    [69]

    Chen B, Long J B, Xie H T, Li C Y, Chen L K, Jiang B N, Chen S 2020 Chin. Opt. Lett. 18 090201Google Scholar

    [70]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [71]

    Xie T Y, Zhao Z Y, Kong X, Ma W C, Wang M Q, Ye X Y, Yu P, Yang Z P, Xu S Y, Wang P F, Wang Y, Shi F Z, Du J F 2021 Sci. Adv. 7 eabg9204Google Scholar

    [72]

    Wei K, Zhao T, Fang X J, Xu Z T, Liu C, Cao Q, Wickenbrock A, Hu Y H, Ji W, Fang J C, Budker D 2023 Phys. Rev. Lett. 130 063201Google Scholar

    [73]

    Li Z P, Ye J T, Huang X, Jiang P Y, Cao Y, Hong Y, Yu C, Zhang J, Zhang Q, Peng C Z, Xu F, Pan J W 2021 Optica 8 344Google Scholar

    [74]

    Wang B, Zheng M Y, Han J J, Huang X, Xie X P, Xu F, Zhang Q, Pan J W 2021 Phys. Rev. Lett. 127 053602Google Scholar

    [75]

    Xia T Y, Sun W W, Ebser S, Jiang W, Yang G M, Zhu H M, Fu Y C, Huang F, Ming G D, Xia T, Lu Z T 2023 Nat. Phys. 19 904Google Scholar

    [76]

    Xu J Y, Zhu X, Tan S J, Zhang Y, Li B, Tian Y Z, Shan H, Cui X F, Zhao A D, Dong Z C, Yang J L, Luo Y, Wang B, Hou J G 2021 Science 371 818Google Scholar

    [77]

    H.R.6227–National Quantum Initiative Act, Smith L https://www.congress.gov/bill/115th-congress/house-bill/6227/text [2018-12-21

    [78]

    H.R.4346–Chips and Science Act, Ryan T https://www.congress.gov/bill/117th-congress/house-bill/4346 [2021-07-01

    [79]

    Quantum Technologies Flagship, European Commission https://digital-strategy.ec.europa.eu/en/policies/quantum-technologies-flagship [2021-10-29

    [80]

    Space-based Secure Connectivity Initiative, European Commission https://ec.europa.eu/info/law/better-regulation/have-your-say/initiahtives/13189-EU-space-policy-space-based-secure-connectivity-initiative_en [2021-08-26

    [81]

    Handlungskonzept Quantentechnologien, der Bundesregierung https://qbn.world/wp-content/uploads/2023/04/Action-Plan-Quantum-Technologies-by-German-Government-2023-2026.pdf [2023-04-26

    [82]

    French Research at the Heart of the Quantum Plan, Felix S https://news.cnrs.fr/articles/french-research-at-the-heart-of-the-quantum-plan [2021-02-17

    [83]

    National Quantum Strategy, GOV. UK https://www.gov.uk/government/publications/national-quantum-strategy/national-quantum-strategy-accessible-webpage [2023-12-14

    [84]

    Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar

    [85]

    Zhao Y W, Ye Y S, Huang H L, et al. 2022 Phys. Rev. Lett. 129 030501Google Scholar

    [86]

    Ni Z C, Li S, Deng X W, Cai Y Y, Zhang L B, Wang W T, Yang Z B, Yu H F, Yan F, Liu S, Zou C L, Sun L Y, Zheng S B, Xu Y, Yu D P 2023 Nature 616 56Google Scholar

  • [1] 周宗权. 量子存储式量子计算机与无噪声光子回波.  , 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [2] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展.  , 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [3] 杨瑞科, 李福军, 武福平, 卢芳, 魏兵, 周晔. 沙尘湍流大气对自由空间量子通信性能影响研究.  , 2022, 71(22): 220302. doi: 10.7498/aps.71.20221125
    [4] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [5] 危语嫣, 高子凯, 王思颖, 朱雅静, 李涛. 基于单光子双量子态的确定性安全量子通信.  , 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [6] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , 2022, 71(22): 220301. doi: 10.7498/aps.71.20220871
    [7] 孙思彤, 丁应星, 刘伍明. 基于线性与非线性干涉仪的量子精密测量研究进展.  , 2022, 71(13): 130701. doi: 10.7498/aps.71.20220425
    [8] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展.  , 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [9] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展.  , 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [10] 范桁. 量子计算与量子模拟.  , 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [11] 成健, 冯晋霞, 李渊骥, 张宽收. 基于量子增强型光纤马赫-曾德尔干涉仪的低频信号测量.  , 2018, 67(24): 244202. doi: 10.7498/aps.67.20181335
    [12] 李熙涵. 量子直接通信.  , 2015, 64(16): 160307. doi: 10.7498/aps.64.160307
    [13] 孙恒信, 刘奎, 张俊香, 郜江瑞. 基于压缩光的量子精密测量.  , 2015, 64(23): 234210. doi: 10.7498/aps.64.234210
    [14] 张沛, 周小清, 李智伟. 基于量子隐形传态的无线通信网络身份认证方案.  , 2014, 63(13): 130301. doi: 10.7498/aps.63.130301
    [15] 何锐. 基于超导量子干涉仪与介观LC共振器耦合电路的量子通信.  , 2012, 61(3): 030303. doi: 10.7498/aps.61.030303
    [16] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议.  , 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [17] 印娟, 钱勇, 李晓强, 包小辉, 彭承志, 杨涛, 潘阁生. 远距离量子通信实验中的高维纠缠源.  , 2011, 60(6): 060308. doi: 10.7498/aps.60.060308
    [18] 周南润, 曾宾阳, 王立军, 龚黎华. 基于纠缠的选择自动重传量子同步通信协议.  , 2010, 59(4): 2193-2199. doi: 10.7498/aps.59.2193
    [19] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌.  , 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [20] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议.  , 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
计量
  • 文章访问数:  5651
  • PDF下载量:  574
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2023-12-19
  • 上网日期:  2023-12-20
  • 刊出日期:  2024-01-05

/

返回文章
返回
Baidu
map