-
面向基础科学与空间应用研究领域对小型化超快脉冲X射线发射源的需求, 设计并研制了基于激光调制光源与光电阴极X射线管的超快脉冲X射线发生器, 解决了传统X射线调制发射装置重复频率低、时间稳定性差、脉冲特性差等应用难题. 本文主要开展了脉冲X射线发生器的超快调制控制模块研究, 并利用基于预调制的激光控制光源实现了高时间精度、高时间稳定度的超快时变光子信号以及纳秒脉冲X射线产生. 理论方面, 建立了脉冲X射线发生器时间响应模型, 分析了出射脉冲X射线的时域时间特性. 实验方面, 搭建了基于超快闪烁体探测器的脉冲X射线时间特性实验测试系统, 测试了激光控制光源及脉冲X射线发射源的时间特性参数. 实验结果表明脉冲X射线发生器可同时实现高重频(12.5 MHz)、超快脉冲(4 ns)、高时间稳定度(400 ps)特性, 且与所建立的理论模型高度符合. 相比于传统X射线调制方案, 脉冲时间参数指标得到了大幅提升、应用场景获得了极大拓展, 本项研究有望为实现超高时间稳定性、超快脉冲X射线发射源提供新思路.
In response to the growing demand for miniaturized ultrafast pulsed X-ray sources in the fields of fundamental science and space applications, we design and develop an ultrafast pulsed X-ray generator based on a laser-modulated light source and a photoelectric cathode. This innovative technology addresses the limitations commonly encountered in traditional X-ray emission devices, such as low repetition rate, insufficient time stability, and suboptimal pulse characteristics. Our effort is to study and develop the ultrafast modulation control module for the pulsed X-ray generator. This effort results in achieving high levels of time accuracy and stability in ultrafast time-varying photon signals. Moreover, we successfully generate nanosecond pulsed X-rays by using a laser-controlled light source. Theoretically, we establish a comprehensive time response model for the pulsed X-ray generator in response to short pulses. This includes a thorough analysis of the time characteristics of the emitted pulsed X-rays in the time domain. Experimentally, we conduct a series of tests related to various time-related parameters of the laser-controlled light source. Additionally, we design and implemente an experimental test system for assessing the time characteristics of pulsed X-rays, by using an ultrafast scintillation detector. The experimental results clearly demonstrate that our pulsed X-ray generator achieves impressive capabilities, including high repetition rates (12.5 MHz), ultrafast pulses (4 ns), and exceptional time stability (400 ps) in X-ray emission. These results closely align with our established theoretical model. Compared with traditional modulation techniques, our system exhibits significant improvement in pulse time parameters, thereby greatly expanding its potential applications. This research provides a valuable insight into achieving ultra-high time stability and ultrafast pulsed X-ray emission sources. These advances will further enhance the capabilities of X-ray technology for scientific research and space applications. -
Keywords:
- pulsed X-ray generator /
- photoelectric cathode X-ray tube /
- laser-controlled light source /
- ultrafast scintillation detector
[1] 胡慧君 2012 博士学位论文(北京: 中国科学院大学)
Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[2] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 66 059701Google Scholar
Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar
[3] 赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页
Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114
[4] 唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar
Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar
[5] Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2
[6] 马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 16 160701Google Scholar
Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar
[7] 全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049
Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049
[8] Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar
[9] Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37
[10] Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304
[11] Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020
[12] 安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页
An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236
[13] Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar
[14] 李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar
Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar
[15] 李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar
Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar
[16] Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar
[17] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 64 120701Google Scholar
Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar
[18] David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar
[19] Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27
[20] Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar
-
图 5 不同重复频率下激光控制光源的输出光信号(蓝色为输入电信号, 红色为MPPC探测器接收到的光信号) (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz
Fig. 5. Light signals of LD light source at different modulation rates under different modulation frequencies (Blue is the input electrical signal, red is the light signal received by the MPPC detector): (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz.
表 1 激光控制光源的特性参数
Table 1. Characteristics of laser controlled light source.
Properties Parameters Emission wavelength/nm 468—478 Rated power/mW 3600 Optical output power/mW 1200 Response time/ns 1.8 Pulse repetition rate DC to MHz Divergence angle/(°) 12 Timing pulse jitter tl/ps $\pm $70 -
[1] 胡慧君 2012 博士学位论文(北京: 中国科学院大学)
Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences
[2] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 66 059701Google Scholar
Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar
[3] 赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页
Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114
[4] 唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar
Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar
[5] Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2
[6] 马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 16 160701Google Scholar
Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar
[7] 全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049
Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049
[8] Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar
[9] Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37
[10] Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304
[11] Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020
[12] 安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页
An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236
[13] Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar
[14] 李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar
Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar
[15] 李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar
Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar
[16] Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar
[17] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 64 120701Google Scholar
Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar
[18] David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar
[19] Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27
[20] Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar
计量
- 文章访问数: 2215
- PDF下载量: 54
- 被引次数: 0