搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超相对论强度激光与薄膜靶作用中0.4 nm以下X射线阿秒脉冲的产生

白易灵 张秋菊 田密 崔春红

引用本文:
Citation:

超相对论强度激光与薄膜靶作用中0.4 nm以下X射线阿秒脉冲的产生

白易灵, 张秋菊, 田密, 崔春红

Generation of attosecond X-ray pulse of wavelength below 0.4 nm from the interaction of ultra-relativistic intense lasers with thin foil targets

Bai Yi-Ling, Zhang Qiu-Ju, Tian Mi, Cui Chun-Hong
PDF
导出引用
  • 用一维粒子模拟程序对功率密度在1022 W/cm2以上的超强激光驱动薄膜靶产生的相对论电子层及其经过汤姆孙散射产生的阿秒X射线进行了研究. 结果表明, 在超相对论强度范围下增大驱动激光强度, 相应减小等离子体密度及厚度可使电子层获得更高纵向动量, 使汤姆孙散射光明显向更短波长移动. 优化相关参数得到了波长为 1.168 nm的阿秒脉冲. 经过对倍频探测光方案与驱动光以及薄膜靶参数进行综合考虑和优化, 得到的X射线相干辐射波长有效减小到0.4 nm以下, 产生的光子能量达到2 keV以上.
    By one-dimensional particle-in-cell simulations, the relativistic electron sheets generated by interaction between the ultra-relativistic intense laser pulse with intensity above 1022 W/cm2 and the thin foil target, as well as the attosecond X-ray pulses induced by Thomson backscattering from electron bunch are studied in this paper. The results indicate that increasing the intensity of the driving laser, reducing the density and thickness of foil target corresponding make the longitudinal momentum of the electrons enhanced and the wavelength of X-ray radiation reduced. Attosecond X-ray pulse with wavelength 1.168 nm can be obtained through optimizing correlated parameters. Especially, using probing laser pulse with doubling frequency and optimizing parameters of the drive light and thin film target can make the wavelength of coherent attosecond X-ray radiation reduced obviously, even below 0.4 nm, and the energy of the scattered photons can achieve more than 2 keV.
    • 基金项目: 国家自然科学基金(批准号: 11104168)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104168).
    [1]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923

    [2]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevie N, BrabecT, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [3]

    Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316 (in Chinese) [曾志男, 李儒新, 谢新华, 徐至展 2004 53 2316]

    [4]

    Wang Q, Chen J X, Xia Y Q, Chen D Y 2003 Chin. Phys. 12 524

    [5]

    Lan P F, Lu P X, Cao W, Wang X L 2005 Phys. Rev. E 72 066501

    [6]

    Lan P F, Lu P X, Cao W, Wang X L 2006 Phys. Plasmas 13 013106

    [7]

    Zheng J, Sheng Z M, Zhang J, Wei Z Y, Yu W 2005 Acta Phys. Sin. 54 1018 (in Chinese) [郑 君, 盛政明, 张 杰, 魏志义, 余 玮 2005 54 1018]

    [8]

    Zhang P, Song Y R, Zhang Z G 2006 Acta Phys. Sin. 55 6208 (in Chinese) [张 鹏, 宋晏蓉, 张志刚 2006 55 6208]

    [9]

    Kaplan A K 1994 Phys. Rev. Lett. 73 1243

    [10]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [11]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [12]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [13]

    Kulagin V V, Vladimir A 2007 Phys. Rev. Lett. 99 124801

    [14]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1997 J. Quan. Elec. 33 1925

    [15]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenkol V, Kuschel K, Siddonsl P, Skaritkal J, Kumita T, Tsunemi A, Omori T, Urakawa T, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [16]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638 (in Chinese) [郑 君, 盛政明, 张 杰 2005 54 2638]

    [17]

    Uesaka M, Kotaki H, Nakajima K, Harono H, Kinoshita K, Watanable T, Ueda T, Yoshii K, Kadno M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res. A 455 90

    [18]

    Li Y, Huang Z, Borland M D, Milton S 2003 Phys. Rev. ST Accel. Beams 5 044701

    [19]

    Anderson S G, Barty C P J, Betts S M, Brown W J, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Kuba J, Lesage G P, Rosenzweig J B, Slaughter D R, Springer D T, Tremaine A M 2004 Appl. Phys. B 78 891

    [20]

    Meyer-ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433

    [21]

    Yan C Y, Zhang Q J, Luo M H 2011 Acta Phys. Sin. 60 035202 (in Chinese) [闫春燕, 张秋菊, 罗牧华 2011 60 035202]

    [22]

    Wu H C, Meyer-ter-Vehn J, Fernández J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801

    [23]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernández J 2011 Phys. Rev. ST Accel. Beams 14 070702

    [24]

    Wu H C, Meyer-ter-Vehn J 2012 Nature 6 304

    [25]

    Jia Q Q, Wang W M, Dong Q L, Sheng Z M 2012 Acta Phys. Sin. 61 015203 (in Chinese) [贾倩倩, 王伟民, 董全力, 盛政明2012 61 015203]

  • [1]

    Drescher M, Hentschel M, Kienberger R, Tempea G, Spielmann C, Reider G A, Corkum P B, Krausz F 2001 Science 291 1923

    [2]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevie N, BrabecT, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [3]

    Zeng Z N, Li R X, Xie X H, Xu Z Z 2004 Acta Phys. Sin. 53 2316 (in Chinese) [曾志男, 李儒新, 谢新华, 徐至展 2004 53 2316]

    [4]

    Wang Q, Chen J X, Xia Y Q, Chen D Y 2003 Chin. Phys. 12 524

    [5]

    Lan P F, Lu P X, Cao W, Wang X L 2005 Phys. Rev. E 72 066501

    [6]

    Lan P F, Lu P X, Cao W, Wang X L 2006 Phys. Plasmas 13 013106

    [7]

    Zheng J, Sheng Z M, Zhang J, Wei Z Y, Yu W 2005 Acta Phys. Sin. 54 1018 (in Chinese) [郑 君, 盛政明, 张 杰, 魏志义, 余 玮 2005 54 1018]

    [8]

    Zhang P, Song Y R, Zhang Z G 2006 Acta Phys. Sin. 55 6208 (in Chinese) [张 鹏, 宋晏蓉, 张志刚 2006 55 6208]

    [9]

    Kaplan A K 1994 Phys. Rev. Lett. 73 1243

    [10]

    Esarey E, Ride S K, Sprangle P 1993 Phys. Rev. E 48 3003

    [11]

    Schoenlein R W, Leemans W P, Chin A H, Volfbeyn P, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1996 Science 274 236

    [12]

    Wang F C, Shen B F, Zhang X M, Li X M, Jin Z Y 2007 Phys. Plasmas 14 083102

    [13]

    Kulagin V V, Vladimir A 2007 Phys. Rev. Lett. 99 124801

    [14]

    Leemans W P, Schoenlein R W, Volfbeyn P, Chin A H, Glover T E, Balling P, Zolotorev M, Kim K J, Chattopadhyay S, Shank C V 1997 J. Quan. Elec. 33 1925

    [15]

    Pogorelsky I V, Ben-Zvi I, Hirose T, Kashiwagi S, Yakimenkol V, Kuschel K, Siddonsl P, Skaritkal J, Kumita T, Tsunemi A, Omori T, Urakawa T, Washio M, Yokoya K, Okugi T, Liu Y, He P, Cline D 2000 Phys. Rev. ST Accel. Beams 3 090702

    [16]

    Zheng J, Sheng Z M, Zhang J 2005 Acta Phys. Sin. 54 2638 (in Chinese) [郑 君, 盛政明, 张 杰 2005 54 2638]

    [17]

    Uesaka M, Kotaki H, Nakajima K, Harono H, Kinoshita K, Watanable T, Ueda T, Yoshii K, Kadno M, Dewa H, Kondo S, Sakai F 2000 Nucl. Instrum. Methods Phys. Res. A 455 90

    [18]

    Li Y, Huang Z, Borland M D, Milton S 2003 Phys. Rev. ST Accel. Beams 5 044701

    [19]

    Anderson S G, Barty C P J, Betts S M, Brown W J, Crane J K, Cross R R, Fittinghoff D N, Gibson D J, Hartemann F V, Kuba J, Lesage G P, Rosenzweig J B, Slaughter D R, Springer D T, Tremaine A M 2004 Appl. Phys. B 78 891

    [20]

    Meyer-ter-Vehn J, Wu H C 2009 Eur. Phys. J. D 55 433

    [21]

    Yan C Y, Zhang Q J, Luo M H 2011 Acta Phys. Sin. 60 035202 (in Chinese) [闫春燕, 张秋菊, 罗牧华 2011 60 035202]

    [22]

    Wu H C, Meyer-ter-Vehn J, Fernández J, Hegelich B M 2010 Phys. Rev. Lett. 104 234801

    [23]

    Wu H C, Meyer-ter-Vehn J, Hegelich B M, Fernández J 2011 Phys. Rev. ST Accel. Beams 14 070702

    [24]

    Wu H C, Meyer-ter-Vehn J 2012 Nature 6 304

    [25]

    Jia Q Q, Wang W M, Dong Q L, Sheng Z M 2012 Acta Phys. Sin. 61 015203 (in Chinese) [贾倩倩, 王伟民, 董全力, 盛政明2012 61 015203]

  • [1] 李树. 光子与相对论麦克斯韦分布电子散射的能谱角度谱研究.  , 2019, 68(1): 015201. doi: 10.7498/aps.68.20181796
    [2] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究.  , 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [3] 王少义, 谭放, 吴玉迟, 范全平, 矫金龙, 董克攻, 钱凤, 曹磊峰, 谷渝秋. 基于半解析自洽理论研究相对论激光脉冲驱动下阿秒X射线源的产生.  , 2017, 66(20): 204205. doi: 10.7498/aps.66.204205
    [4] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器.  , 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [5] 刘振帮, 黄华, 金晓, 袁欢, 戈弋, 何琥, 雷禄容. 长脉冲X波段多注相对论速调管放大器的初步实验研究.  , 2015, 64(1): 018401. doi: 10.7498/aps.64.018401
    [6] 刘振帮, 金晓, 黄华, 陈怀璧, 王淦平. X波段同轴多注相对论速调管放大器的初步实验研究.  , 2012, 61(23): 238402. doi: 10.7498/aps.61.238402
    [7] 王兆军, 吕国梁, 朱春花, 霍文生. 相对论简并电子气体的磁化.  , 2012, 61(17): 179701. doi: 10.7498/aps.61.179701
    [8] 田密, 张秋菊, 白易灵, 崔春红. 电子在线极化相对论强度驻波场中的散射研究.  , 2012, 61(20): 203401. doi: 10.7498/aps.61.203401
    [9] 贾倩倩, 王伟民, 董全力, 盛政明. 超短强激光与固体薄膜靶作用产生keV相干X射线数值模拟研究.  , 2012, 61(1): 015203. doi: 10.7498/aps.61.015203
    [10] 刘振帮, 黄华, 金晓, 陈怀璧. X波段三重轴相对论速调管放大器的设计.  , 2011, 60(12): 128402. doi: 10.7498/aps.60.128402
    [11] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生.  , 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [12] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响.  , 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [13] 罗牧华, 张秋菊, 闫春燕. 超相对论激光和稠密等离子体作用产生阿秒脉冲的优化.  , 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [14] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 近相对论强度激光与薄膜靶相互作用中靶厚度对超热电子发射方向的影响.  , 2006, 55(4): 1894-1899. doi: 10.7498/aps.55.1894
    [15] 郑 君, 盛政明, 张 杰, 魏志义, 余 玮. 影响单电子非线性汤姆孙散射因素的研究.  , 2005, 54(3): 1018-1035. doi: 10.7498/aps.54.1018
    [16] 何 峰, 余 玮, 徐 涵, 陆培祥. 相对论飞秒激光脉冲在真空中对预加速电子的加速.  , 2005, 54(9): 4203-4207. doi: 10.7498/aps.54.4203
    [17] 沈文达, 朱莳通. 库仑相互作用对相对论性电子束受激散射的影响.  , 1982, 31(2): 234-236. doi: 10.7498/aps.31.234
    [18] 李福利. 用负温度高能离子束的相对论多普勒效应实现从红外到X射线连续调谐激光器.  , 1980, 29(4): 429-438. doi: 10.7498/aps.29.429
    [19] 方励之, 刘永镇. 强磁场中相对论性电子的拉曼散射.  , 1976, 25(6): 521-526. doi: 10.7498/aps.25.521
    [20] 吕景发. 在相对论性电子上康普顿散射的极化自旋关联现象.  , 1965, 21(11): 1927-1932. doi: 10.7498/aps.21.1927
计量
  • 文章访问数:  6174
  • PDF下载量:  558
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-14
  • 修回日期:  2013-03-09
  • 刊出日期:  2013-06-05

/

返回文章
返回
Baidu
map