搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型化涡旋光模式解复用器: 原理、制备及应用

杨鑫宇 叶华朋 李佩芸 廖鹤麟 袁冬 周国富

引用本文:
Citation:

小型化涡旋光模式解复用器: 原理、制备及应用

杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富

Miniaturized optical vortex mode demultiplexer: Principle, fabrication, and applications

Yang Xin-Yu, Ye Hua-Peng, Li Pei-Yun, Liao He-Lin, Yuan Dong, Zhou Guo-Fu
PDF
HTML
导出引用
  • 涡旋光因其具有光学轨道角动量 (orbital angular momentum, OAM) 而在近二十年倍受关注. 由于具有不同 OAM的涡旋光相互正交, 涡旋光在光通信领域展现了巨大的潜力, 为未来实现高速、大容量的光通信技术提供了潜在的解决方案. 本文旨在介绍涡旋光OAM模式解复用技术的基本原理、小型化器件加工方法和在光通信领域的新兴应用. 首先, 回顾OAM模式解复用工作原理的发展历程; 随后, 针对涡旋光OAM模式解复用, 将介绍多种典型的小型化器件制备方法; 最后探讨基于轨道角动量的涡旋光模式解复用在通信领域中的新兴应用, 并对OAM模式解复用的未来发展趋势及前景进行了深入分析和展望.
    Vortex beams have attracted extensive attention in recent decade due to the carried optical orbital angular momentum (OAM). Vortex beams carrying different OAM modes are orthogonal to each other, and thus have become highly promising in realizing high-capacity optical communication systems. This review is to introduce the fundamental principles of optical OAM mode demultiplexing, recent advances in the fabrication techniques and emerging applications in high-capacity optical communications. First, this review introduces the development history of the working principle of OAM mode demultiplexer. Subsequently, a variety of preparation techniques and emerging applications of OAM mode demultiplexing are discussed in detail. Finally, we provide an in-depth analysis and outlook for the future trends and prospects of the OAM mode demultiplexer.
      通信作者: 叶华朋, yehp@m.scnu.edu.cn ; 袁冬, yuandong@scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805087)、 广东省普通高校重点领域专项(批准号: 2021ZDZX1048)、广东省光信息材料与技术重点实验室(批准号: 2017B030301007)和国家绿色光电子国际联合研究中心(批准号: 2016B01018)资助的课题.
      Corresponding author: Ye Hua-Peng, yehp@m.scnu.edu.cn ; Yuan Dong, yuandong@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805087), the Special Program on Key Fields for Colleges and Universities of Guangdong Province, China (Grant No. 2021ZDZX1048), the Key Laboratory of Optical Information Materials and Technology Guangdong Province, China (Grant No. 2017B030301007), and the National Green Optoelectronics International Joint Research Center (Grant No. 2016B01018).
    [1]

    Webb W, Hanzo L 1994 Modern Quadrature Amplitude Modulation: Principles and Applications for Wireless Communications (Hoboken: Wiley-IEEE Press

    [2]

    Mukherjee B 2006 Optical WDM Networks (New York: Springer

    [3]

    Hanzo L, Ng S X, Keller T, Webb W 2004 Quadrature Amplitude Modulation (Hoboken: Wiley-IEEE Press

    [4]

    Rubinsztein-Dunlop H, Forbes A, Berry M V 2017 J. Opt. 19 013001Google Scholar

    [5]

    Forbes A, De Oliveira M, Dennis M R 2021 Nat. Photon. 15 253Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Van Enk S J, Nienhuis G 1992 Opt. Commun. 94 147Google Scholar

    [8]

    Beijersbergen M W, Allen L, Van Der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [9]

    Molina-Terriza G, Torres J P, Torner L 2007 Nat. Phys. 3 305Google Scholar

    [10]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [11]

    Tkachenko G, Chen M Z, Dholakia K, Mazilu M 2017 Optica 4 330Google Scholar

    [12]

    Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P, Yuan X 2015 Sci. Rep. 5 15446Google Scholar

    [13]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [14]

    Xie G, Song H, Zhao Z, Milione G, Ren Y, Liu C, Zhang R, Bao C, Li L, Wang Z, Pang K, Starodubov D, Lynn B, Tur M, Willner A E 2017 Opt. Lett. 42 4482Google Scholar

    [15]

    Qiu C W, Yang Y 2017 Science 357 645Google Scholar

    [16]

    Swartzlander J G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [17]

    Tamburini F, Thide B, Molina-Terriza G, Anzolin G 2011 Nat. Phys. 7 195Google Scholar

    [18]

    Fang X, Ren H, Gu M 2019 Nat. Photonics 14 102Google Scholar

    [19]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [20]

    Wang J 2016 Photon. Res. 4 B14Google Scholar

    [21]

    Jia P, Yang Y, Min C J, Fang H, Yuan X C 2013 Opt. Lett. 38 588Google Scholar

    [22]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [23]

    Ren Y, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G, Cao Y, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306Google Scholar

    [24]

    Padgett M, Courtial J, Allen L 2004 Phys. Today 57 35Google Scholar

    [25]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [26]

    Carpentier A V, Michinel H, Salgueiro J R, Olivieri D 2008 Am. J. Phys. 76 916Google Scholar

    [27]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [28]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [29]

    Kumar A, Vaity P, Krishna Y, Singh R P 2010 Opt. Laser Eng. 48 276Google Scholar

    [30]

    Bouchal Z, Haderka O, Celechovsky R 2005 New J. Phys. 7 125Google Scholar

    [31]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [32]

    Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [33]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [34]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [35]

    Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S 2017 Opt. Lett. 42 179Google Scholar

    [36]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [37]

    Liu C M, Liu J S, Niu L T, Wei X L, Wang K J, and Yang Z G 2017 Sci. Rep. 7 3891Google Scholar

    [38]

    Liu Y X, Sun S H, Pu J X, Lu B D 2013 Opt. Laser Technol. 45 473Google Scholar

    [39]

    Ambuj A, Vyas R, Singh S 2014 Opt. Lett. 39 5475Google Scholar

    [40]

    Tao H, Liu Y, Chen Z, Pu J 2012 Appl. Phys. B 106 927Google Scholar

    [41]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [42]

    Ruffato G, Massari M, Romanato F 2016 Sci. Rep. 6 24760Google Scholar

    [43]

    Zheng S, Wang J 2017 Sci. Rep. 7 40781Google Scholar

    [44]

    Dai K J, Gao C Q, Zhong L, Na Q X, Wang Q 2015 Opt. Lett. 40 562Google Scholar

    [45]

    Harris M, Hill C A, Tapster P R, Vaughan J M 1994 Phys. Rev. A 49 3119Google Scholar

    [46]

    Martelli P, Boffi P, Fasiello A, Martinelli M 2015 Electron. Lett. 51 278Google Scholar

    [47]

    Hossack W J, Darling A M, Dahdouh A 1987 J. Modern Opt. 34 1235Google Scholar

    [48]

    Ruffato G, Massari M, Parisi G, Romanato F 2017 Opt. Express 25 7859Google Scholar

    [49]

    Yang J S, Liu Z B, Gao S C, Huang X C, Feng Y H, Liu W P, Li Z H 2019 Opt. Express 27 4338Google Scholar

    [50]

    Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601Google Scholar

    [51]

    Lavery M P, Robertson D J, Berkhout G C, Love G D, Padgett M J, Courtial J 2012 Opt. Express 20 2110Google Scholar

    [52]

    Ruffato G, Massari M, Romanato F 2017 Opt. Lett. 42 551Google Scholar

    [53]

    Ruffato G, Massari M, M Girardi, G Parisi, Zontini M, and Romanato F 2019 Opt. Express 27 24123Google Scholar

    [54]

    Lightman S, Hurvitz G, Gvishi R, Arie A 2017 Optica 4 605Google Scholar

    [55]

    Wan C H, Chen J, Zhan Q W 2017 APL Photonics 2 031302Google Scholar

    [56]

    Li L, Guo Y C, Zhang Z C, Shang Z J, Li C, Wang J Q, Gao L L, Hai L, Gao C Q, Fu S Y 2023 Adv. Photon. 5 056002Google Scholar

    [57]

    Mirhosseini M, Malik M, Shi Z, Boyd R W 2013 Nat. Commun. 4 2781Google Scholar

    [58]

    Malik M, Mirhosseini M, Lavery M 2014 Nat. Commun. 5 3115Google Scholar

    [59]

    Wen Y H, Chremmos I, Chen Y J, Zhu J B, Zhang Y F, Yu S Y 2018 Phys. Rev. Lett. 120 193904Google Scholar

    [60]

    Fontaine N K, Ryf R, Chen H, Neilson D T, Kim K, Carpenter J 2019 Nat. Commun. 10 1865Google Scholar

    [61]

    Liu Z B, Gao S C, Lai Z Y, Li Y R, Ao Z H, Li J P, Tu J J, Wu Y X, Liu W P, Li Z H 2023 Laser Photonics Rev. 17 2200536Google Scholar

    [62]

    Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, Ye H, Li Y, Chen S, Fan D 2021 Phys. Rev. Appl. 15 014037Google Scholar

    [63]

    Brandt F, Hiekkamäki M, Bouchard F, Huber M, Fickler R 2020 Optica 7 98Google Scholar

    [64]

    Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F 2014 Opt. Express 22 15599Google Scholar

    [65]

    Schloegel K, Karypis G, Kumar V 2001 IEEE T. Parall. Distr. 12 451Google Scholar

    [66]

    Cao H, Liang Y Z, Wang L L, Ruan Z S, Wang H Y, Zeng J W, Wang J 2023 Laser Photonics Rev. 17 2200631Google Scholar

    [67]

    Shi J S, Wei D, Hu C, Chen M C, Liu K W, Luo J, Zhang X Y 2021 Opt. Express 29 7084Google Scholar

    [68]

    Veli M, Mengu D, Yardimci N T, Luo Y, Li J, Rivenson Y, Jarrahi M, Ozcan A 2021 Nat. Commun. 12 37Google Scholar

    [69]

    Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q 2021 Nature Photonics 15 367Google Scholar

    [70]

    Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, Fang L, Lin X, Dai Q 2019 Phys. Rev. Lett. 123 023901Google Scholar

    [71]

    Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, Ozcan A 2018 Science 361 1004Google Scholar

    [72]

    Doster T, Watnik A T 2017 Appl. Opt. 56 3386Google Scholar

    [73]

    Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W, Li T, Hu W, Lu Y Q 2018 Adv. Mater. 30 1705865Google Scholar

    [74]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [75]

    Liu S J, Chen P, S. Ge J, Zhu L, Zhang Y H, Lu Y Q 2022 Laser Photonics Rev. 16 2200118Google Scholar

    [76]

    Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E 2009 Appl. Phys. Lett. 94 231124Google Scholar

    [77]

    Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X 2020 Appl. Opt. 59 11041Google Scholar

    [78]

    Xie Z, Lei T, Weng X, Du L, Gao S, Yuan Y, Feng S, Zhang Y, Yuan X 2016 IEEE Photonics Technology Letters 28 2799Google Scholar

    [79]

    Min C, Liu J, Lei T, Si G, Xie Z, Lin J, Du L, Yuan X 2016 Laser Photonics Rev. 10 978Google Scholar

    [80]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [81]

    Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022 Nano. Lett. 22 3993Google Scholar

    [82]

    Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, Zhang W 2020 Adv. Optical Mater. 8 1901666Google Scholar

    [83]

    Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X 2017 Adv. Optical Mater. 5 1600502Google Scholar

    [84]

    Zhang S, Huo P, Zhu W, Zhang C, Chen P, Liu M, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2020 Laser & Photonics Reviews 14 2000062Google Scholar

    [85]

    Fu P, Ni P N, Wang Q H, Liu Y F, Wu B, Chen P P, Kan Q, Wang S P, Chen H D, Xu C, Xie Y Y 2021 Adv. Optical Mater. 9 2101308Google Scholar

    [86]

    Chung H, Kim D, Choi E, Lee J 2022 Laser Photonics Rev. 16 2100456Google Scholar

    [87]

    Feng Q, Kong X, Shan M, Lin Y, Li L, Cui T J 2022 Phys. Rev. Appl. 17 034017Google Scholar

    [88]

    Fang J C, Xie Z W, Lei T, Min C J, Du L P, Li Z H, Yuan X C 2018 Acs Photonics 5 3478Google Scholar

    [89]

    Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y 2017 ACS Photonics 5 1726Google Scholar

    [90]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [91]

    Wang P P, Xiong W J, Huang Z B, He Y L, Liu J M, Ye H P, Xiao J N, Li Y, Fan D Y, Chen S Q 2022 IEEE J. Sel. Top. Quant. 28 7500111Google Scholar

    [92]

    Wang P, Xiong W, Huang Z, He Y, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2021 Photon. Res. 9 2116Google Scholar

    [93]

    Xiong W J, Huang Z B, Wang P P, Wang X R, He Y L, Wang C F, Liu J M, Ye H P, Fan D Y, Chen S Q 2021 Opt. Express 29 36936Google Scholar

    [94]

    Xiong W, Wang P, Cheng M, Liu J, He Y, Zhou X, Xiao J, Li Y, Chen S, Fan D 2020 J. Lightwave Technol. 38 1712Google Scholar

    [95]

    Willner A E, Li L, Xie G, Ren Y, Huang H, Yue Y, Ahmed N, Willner M J, Willner A J, Yan Y, Zhao Z, Wang Z, Liu C, Tur M, Ashrafi S 2016 Photon. Res. 4 B5Google Scholar

    [96]

    Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [97]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [98]

    Wang J, Yang J Y , Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [99]

    Li L, Zhang R, Zhao Z, Xie G, Liao P, Pang K, Song H, Liu C, Ren Y, Labroille G, Jian P, Starodubov D, Lynn B, Bock R, Tur M, Willner A E 2017 Sci. Rep. 7 17427Google Scholar

    [100]

    Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [101]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716Google Scholar

    [102]

    Zhu L, Liu J, Mo Q, Du C, Wang J 2016 Opt. Express 24 16934Google Scholar

    [103]

    Lavery M P J, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd R W, Padgett M J, Marquardt C, Leuchs G 2017 Sci. Adv. 3 e1700552Google Scholar

    [104]

    Heng X B, Gan J L, Zhang Z S, Li J, Li M Q, Zhao H, Qian Q, Xu S H, Yang Z M 2018 Opt. Express 26 17429Google Scholar

    [105]

    Liu J, Zhang J, Liu J, Lin Z , Li Z, Lin Z, Zhang J, Huang C, Mo S, Shen L, Lin S, Chen Y, Gao R, Zhang L, Lan X, Cai X, Li Z, Yu S 2022 Light Sci. Appl. 11 202Google Scholar

  • 图 1  基于马赫-曾德干涉仪的OAM分选方案 (a) OAM分类器的第1阶段; (b) OAM分类器的前3个阶段, 每个灰色框代表(a)图所示的干涉仪[41]; (c) 基于柱面透镜干涉的OAM多路复用器/解复用器方案; (d) l = 0时, BER的测量值随OAM模式解复用后接收的光功率的变化规律, 正方形为单个OAM模式, 不受l = 1模式串扰, 三角形为两个OAM模式, 受l = 1 模式串扰[46]

    Fig. 1.  The schematic of the OAM sorter based on Mach-Zehnder interferometer: (a) The first stage of the OAM sorter; (b) the first three stages of the OAM sorter, the gray boxes in each stage represent the interferometer shown in Fig. 1(a) [41]; (c) OAM multiplexer/demultiplexer based on interference via cylindrical lens; (d) BER values measured against the received optical power after OAM demultiplexing for mode l = 0, line denoted with triangles represents two OAM modes with crosstalk because of mode l = 1, while line denoted with squares represents single OAM mode without crosstalk[46].

    图 2  利用对数-极坐标转换法实现OAM模式分离的原理 (a) 对数-极坐标转换法实验装置图[50]; (b) 基于对数-极坐标变换的紧凑OAM模式解复用方案[52]; (c) 使用折射光学元件将 OAM 状态转换为横向动量状态的光路示意图[51]

    Fig. 2.  The principle of realizing OAM mode separation based on logarithmic-polar coordinate transformation method: (a) The schematic of the experimental setup based on log-polar coordinate transformation method [50]; (b) the scheme of compact OAM mode demultiplexer based on logarithmic-polar coordinate transformation method[52]; (c) the optical path of converting the OAM state into a transverse momentum state using refractive optical elements[51].

    图 3  (a) 模式复制方案分选的光路图[58]; (b) 螺旋极坐标转换原理与对数极坐标转换原理的对比示意图; (c) 螺旋极坐标转换原理的分选光路图[59]

    Fig. 3.  (a) The schematic of the experimental setup of the mode sorter based on refractive beam-copying method[58]; (b) comparison between the principle of spiral-polar coordinate transformation method and the principle of the log-polar coordinate transformation method; (c) the diagram of the optical path based on spiral-polar coordinate transformation method[59].

    图 4  (a) 用于HG/LG叠加态分解的多平面光转换器件[60]; (b) 准小波共形映射示意图[66]; (c) 基于光衍射神经网络的宽带、低串扰和大信道OAM模式解复用[60]

    Fig. 4.  (a) Multi-plane optical converter for HG/LG superposition state decomposition[60]; (b) the schematic of quasi-wavelet conformal mapping[66]; (c) low crosstalk OAM mode demultiplexer based on optical diffraction neural network[60].

    图 5  (a) 光子的SAM变化转换为OAM的装置示意图[76]; (b) 基于达曼光栅进行OAM(解)复用的自由空间光通信示意图[22]; (c) 使用双光子光刻技术在少模光纤表面上制造涡旋光栅示意图[80]; (d)基于电子束刻蚀法制作的超表面流程图[81]

    Fig. 5.  (a) The schematic of SAM-OAM mode converter[76]; (b) the schematic of free-space optical communication based on Dammann grating for OAM (de)multiplexing[22]; (c) the details of fabricating vortex gratings on the surface of few-mode optical fibers using two-photon lithography[80]; (d) flow chart of producing metasurface based on electron beam etching[81].

    图 6  (a) Pancharatnam-Berry光学元件器件的相位分布图[88]; (b) 基于使用单层超表面的太赫兹频段 OAM 复用方案的天线结构示意图[89]; (c) 携带OAM的光束的光电流测量示意图[90]

    Fig. 6.  (a) Phase distribution of Pancharatnam-Berry photonic device[88]; (b) the schematic of the nanoantenna of single-layer metasurface for terahertz OAM multiplexing[89]; (c) the schematic of the photocurrent measurement for optical beams carrying OAM[90]

    图 7  (a)载有信息的涡旋光束的复用/解复用以及偏振复用/解复用[98]; (b)埃尔朗根天际线1.6 km远的自由空间扭曲光路径和实验装置图[103]; (c) 用于表征生成的涡旋光束的实验装置[104]; (d) OAM-SDM-WDM数据传输的实验装置[105]; (e) OAM复用光纤通信系统的实验装置, 实验装置包括发射器、OAM(解)复用器和接收器[80]

    Fig. 7.  (a) De/multiplexing of OAM beams carrying information and de/multiplexing of polarization [98]; (b) 1.6 km free-space link in the city of Erlangen and the corresponding experimental setup[103]; (c) experimental setup for characterizing the generated OAM beam[104]; (d) experimental setup of OAM-SDM-WDM data transmission[105]; (e) experimental setup of the optical fiber communication system for OAM multiplexing, including a transmitter, an OAM, de/multiplexer and a receiver[80].

    Baidu
  • [1]

    Webb W, Hanzo L 1994 Modern Quadrature Amplitude Modulation: Principles and Applications for Wireless Communications (Hoboken: Wiley-IEEE Press

    [2]

    Mukherjee B 2006 Optical WDM Networks (New York: Springer

    [3]

    Hanzo L, Ng S X, Keller T, Webb W 2004 Quadrature Amplitude Modulation (Hoboken: Wiley-IEEE Press

    [4]

    Rubinsztein-Dunlop H, Forbes A, Berry M V 2017 J. Opt. 19 013001Google Scholar

    [5]

    Forbes A, De Oliveira M, Dennis M R 2021 Nat. Photon. 15 253Google Scholar

    [6]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [7]

    Van Enk S J, Nienhuis G 1992 Opt. Commun. 94 147Google Scholar

    [8]

    Beijersbergen M W, Allen L, Van Der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123Google Scholar

    [9]

    Molina-Terriza G, Torres J P, Torner L 2007 Nat. Phys. 3 305Google Scholar

    [10]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [11]

    Tkachenko G, Chen M Z, Dholakia K, Mazilu M 2017 Optica 4 330Google Scholar

    [12]

    Zhang Y, Shi W, Shen Z, Man Z, Min C, Shen J, Zhu S, Urbach H P, Yuan X 2015 Sci. Rep. 5 15446Google Scholar

    [13]

    Tamburini F, Anzolin G, Umbriaco G, Bianchini A, Barbieri C 2006 Phys. Rev. Lett. 97 163903Google Scholar

    [14]

    Xie G, Song H, Zhao Z, Milione G, Ren Y, Liu C, Zhang R, Bao C, Li L, Wang Z, Pang K, Starodubov D, Lynn B, Tur M, Willner A E 2017 Opt. Lett. 42 4482Google Scholar

    [15]

    Qiu C W, Yang Y 2017 Science 357 645Google Scholar

    [16]

    Swartzlander J G A, Ford E L, Abdul-Malik R S, Close L M, Peters M A, Palacios D M, Wilson D W 2008 Opt. Express 16 10200Google Scholar

    [17]

    Tamburini F, Thide B, Molina-Terriza G, Anzolin G 2011 Nat. Phys. 7 195Google Scholar

    [18]

    Fang X, Ren H, Gu M 2019 Nat. Photonics 14 102Google Scholar

    [19]

    Erhard M, Fickler R, Krenn M, Zeilinger A 2018 Light Sci. Appl. 7 17146Google Scholar

    [20]

    Wang J 2016 Photon. Res. 4 B14Google Scholar

    [21]

    Jia P, Yang Y, Min C J, Fang H, Yuan X C 2013 Opt. Lett. 38 588Google Scholar

    [22]

    Lei T, Zhang M, Li Y R, Jia P, Liu G N, Xu X G, Li Z H, Min C J, Lin J, Yu C Y, Niu H B, Yuan X C 2015 Light Sci. Appl. 4 e257Google Scholar

    [23]

    Ren Y, Li L, Wang Z, Kamali S M, Arbabi E, Arbabi A, Zhao Z, Xie G, Cao Y, Ahmed N, Yan Y, Liu C, Willner A J, Ashrafi S, Tur M, Faraon A, Willner A E 2016 Sci. Rep. 6 33306Google Scholar

    [24]

    Padgett M, Courtial J, Allen L 2004 Phys. Today 57 35Google Scholar

    [25]

    Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar

    [26]

    Carpentier A V, Michinel H, Salgueiro J R, Olivieri D 2008 Am. J. Phys. 76 916Google Scholar

    [27]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [28]

    Cai X, Wang J, Strain M J, Johnson-Morris B, Zhu J, Sorel M, O'Brien J L, Thompson M G, Yu S 2012 Science 338 363Google Scholar

    [29]

    Kumar A, Vaity P, Krishna Y, Singh R P 2010 Opt. Laser Eng. 48 276Google Scholar

    [30]

    Bouchal Z, Haderka O, Celechovsky R 2005 New J. Phys. 7 125Google Scholar

    [31]

    Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J. Opt. 13 064001Google Scholar

    [32]

    Bozinovic N, Yue Y, Ren Y X, Tur M, Kristensen P, Huang H, Willner A E, Ramachandran S 2013 Science 340 1545Google Scholar

    [33]

    Anhauser A, Wunenburger R, Brasselet E 2012 Phys. Rev. Lett. 109 034301Google Scholar

    [34]

    Jiang X, Li Y, Liang B, Cheng J C, Zhang L K 2016 Phys. Rev. Lett. 117 034301Google Scholar

    [35]

    Li H, Ren G, Zhu B, Gao Y, Yin B, Wang J, Jian S 2017 Opt. Lett. 42 179Google Scholar

    [36]

    Verbeeck J, Tian H, Schattschneider P 2010 Nature 467 301Google Scholar

    [37]

    Liu C M, Liu J S, Niu L T, Wei X L, Wang K J, and Yang Z G 2017 Sci. Rep. 7 3891Google Scholar

    [38]

    Liu Y X, Sun S H, Pu J X, Lu B D 2013 Opt. Laser Technol. 45 473Google Scholar

    [39]

    Ambuj A, Vyas R, Singh S 2014 Opt. Lett. 39 5475Google Scholar

    [40]

    Tao H, Liu Y, Chen Z, Pu J 2012 Appl. Phys. B 106 927Google Scholar

    [41]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [42]

    Ruffato G, Massari M, Romanato F 2016 Sci. Rep. 6 24760Google Scholar

    [43]

    Zheng S, Wang J 2017 Sci. Rep. 7 40781Google Scholar

    [44]

    Dai K J, Gao C Q, Zhong L, Na Q X, Wang Q 2015 Opt. Lett. 40 562Google Scholar

    [45]

    Harris M, Hill C A, Tapster P R, Vaughan J M 1994 Phys. Rev. A 49 3119Google Scholar

    [46]

    Martelli P, Boffi P, Fasiello A, Martinelli M 2015 Electron. Lett. 51 278Google Scholar

    [47]

    Hossack W J, Darling A M, Dahdouh A 1987 J. Modern Opt. 34 1235Google Scholar

    [48]

    Ruffato G, Massari M, Parisi G, Romanato F 2017 Opt. Express 25 7859Google Scholar

    [49]

    Yang J S, Liu Z B, Gao S C, Huang X C, Feng Y H, Liu W P, Li Z H 2019 Opt. Express 27 4338Google Scholar

    [50]

    Berkhout G C, Lavery M P, Courtial J, Beijersbergen M W, Padgett M J 2010 Phys. Rev. Lett. 105 153601Google Scholar

    [51]

    Lavery M P, Robertson D J, Berkhout G C, Love G D, Padgett M J, Courtial J 2012 Opt. Express 20 2110Google Scholar

    [52]

    Ruffato G, Massari M, Romanato F 2017 Opt. Lett. 42 551Google Scholar

    [53]

    Ruffato G, Massari M, M Girardi, G Parisi, Zontini M, and Romanato F 2019 Opt. Express 27 24123Google Scholar

    [54]

    Lightman S, Hurvitz G, Gvishi R, Arie A 2017 Optica 4 605Google Scholar

    [55]

    Wan C H, Chen J, Zhan Q W 2017 APL Photonics 2 031302Google Scholar

    [56]

    Li L, Guo Y C, Zhang Z C, Shang Z J, Li C, Wang J Q, Gao L L, Hai L, Gao C Q, Fu S Y 2023 Adv. Photon. 5 056002Google Scholar

    [57]

    Mirhosseini M, Malik M, Shi Z, Boyd R W 2013 Nat. Commun. 4 2781Google Scholar

    [58]

    Malik M, Mirhosseini M, Lavery M 2014 Nat. Commun. 5 3115Google Scholar

    [59]

    Wen Y H, Chremmos I, Chen Y J, Zhu J B, Zhang Y F, Yu S Y 2018 Phys. Rev. Lett. 120 193904Google Scholar

    [60]

    Fontaine N K, Ryf R, Chen H, Neilson D T, Kim K, Carpenter J 2019 Nat. Commun. 10 1865Google Scholar

    [61]

    Liu Z B, Gao S C, Lai Z Y, Li Y R, Ao Z H, Li J P, Tu J J, Wu Y X, Liu W P, Li Z H 2023 Laser Photonics Rev. 17 2200536Google Scholar

    [62]

    Huang Z, Wang P, Liu J, Xiong W, He Y, Xiao J, Ye H, Li Y, Chen S, Fan D 2021 Phys. Rev. Appl. 15 014037Google Scholar

    [63]

    Brandt F, Hiekkamäki M, Bouchard F, Huber M, Fickler R 2020 Optica 7 98Google Scholar

    [64]

    Labroille G, Denolle B, Jian P, Genevaux P, Treps N, Morizur J F 2014 Opt. Express 22 15599Google Scholar

    [65]

    Schloegel K, Karypis G, Kumar V 2001 IEEE T. Parall. Distr. 12 451Google Scholar

    [66]

    Cao H, Liang Y Z, Wang L L, Ruan Z S, Wang H Y, Zeng J W, Wang J 2023 Laser Photonics Rev. 17 2200631Google Scholar

    [67]

    Shi J S, Wei D, Hu C, Chen M C, Liu K W, Luo J, Zhang X Y 2021 Opt. Express 29 7084Google Scholar

    [68]

    Veli M, Mengu D, Yardimci N T, Luo Y, Li J, Rivenson Y, Jarrahi M, Ozcan A 2021 Nat. Commun. 12 37Google Scholar

    [69]

    Zhou T, Lin X, Wu J, Chen Y, Xie H, Li Y, Fan J, Wu H, Fang L, Dai Q 2021 Nature Photonics 15 367Google Scholar

    [70]

    Yan T, Wu J, Zhou T, Xie H, Xu F, Fan J, Fang L, Lin X, Dai Q 2019 Phys. Rev. Lett. 123 023901Google Scholar

    [71]

    Lin X, Rivenson Y, Yardimci N T, Veli M, Luo Y, Jarrahi M, Ozcan A 2018 Science 361 1004Google Scholar

    [72]

    Doster T, Watnik A T 2017 Appl. Opt. 56 3386Google Scholar

    [73]

    Chen P, Ma L L, Duan W, Chen J, Ge S J, Zhu Z H, Tang M J, Xu R, Gao W, Li T, Hu W, Lu Y Q 2018 Adv. Mater. 30 1705865Google Scholar

    [74]

    Milione G, Nguyen T A, Leach J, Nolan D A, Alfano R R 2015 Opt. Lett. 40 4887Google Scholar

    [75]

    Liu S J, Chen P, S. Ge J, Zhu L, Zhang Y H, Lu Y Q 2022 Laser Photonics Rev. 16 2200118Google Scholar

    [76]

    Karimi E, Piccirillo B, Nagali E, Marrucci L, Santamato E 2009 Appl. Phys. Lett. 94 231124Google Scholar

    [77]

    Zhang H, Fu C, Fang J, Lei T, Zhang Y, Yuan X 2020 Appl. Opt. 59 11041Google Scholar

    [78]

    Xie Z, Lei T, Weng X, Du L, Gao S, Yuan Y, Feng S, Zhang Y, Yuan X 2016 IEEE Photonics Technology Letters 28 2799Google Scholar

    [79]

    Min C, Liu J, Lei T, Si G, Xie Z, Lin J, Du L, Yuan X 2016 Laser Photonics Rev. 10 978Google Scholar

    [80]

    Xie Z, Gao S, Lei T, Feng S, Zhang Y, Li F, Zhang J, Li Z, Yuan X 2018 Photon. Res. 6 743Google Scholar

    [81]

    Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022 Nano. Lett. 22 3993Google Scholar

    [82]

    Li S, Li X, Zhang L, Wang G, Zhang L, Liu M, Zeng C, Wang L, Sun Q, Zhao W, Zhang W 2020 Adv. Optical Mater. 8 1901666Google Scholar

    [83]

    Li Y, Li X, Chen L, Pu M, Jin J, Hong M, Luo X 2017 Adv. Optical Mater. 5 1600502Google Scholar

    [84]

    Zhang S, Huo P, Zhu W, Zhang C, Chen P, Liu M, Chen L, Lezec H J, Agrawal A, Lu Y, Xu T 2020 Laser & Photonics Reviews 14 2000062Google Scholar

    [85]

    Fu P, Ni P N, Wang Q H, Liu Y F, Wu B, Chen P P, Kan Q, Wang S P, Chen H D, Xu C, Xie Y Y 2021 Adv. Optical Mater. 9 2101308Google Scholar

    [86]

    Chung H, Kim D, Choi E, Lee J 2022 Laser Photonics Rev. 16 2100456Google Scholar

    [87]

    Feng Q, Kong X, Shan M, Lin Y, Li L, Cui T J 2022 Phys. Rev. Appl. 17 034017Google Scholar

    [88]

    Fang J C, Xie Z W, Lei T, Min C J, Du L P, Li Z H, Yuan X C 2018 Acs Photonics 5 3478Google Scholar

    [89]

    Zhao H, Quan B, Wang X, Gu C, Li J, Zhang Y 2017 ACS Photonics 5 1726Google Scholar

    [90]

    Ji Z, Liu W, Krylyuk S, Fan X, Zhang Z, Pan A, Feng L, Davydov A, Agarwal R 2020 Science 368 763Google Scholar

    [91]

    Wang P P, Xiong W J, Huang Z B, He Y L, Liu J M, Ye H P, Xiao J N, Li Y, Fan D Y, Chen S Q 2022 IEEE J. Sel. Top. Quant. 28 7500111Google Scholar

    [92]

    Wang P, Xiong W, Huang Z, He Y, Xie Z, Liu J, Ye H, Li Y, Fan D, Chen S 2021 Photon. Res. 9 2116Google Scholar

    [93]

    Xiong W J, Huang Z B, Wang P P, Wang X R, He Y L, Wang C F, Liu J M, Ye H P, Fan D Y, Chen S Q 2021 Opt. Express 29 36936Google Scholar

    [94]

    Xiong W, Wang P, Cheng M, Liu J, He Y, Zhou X, Xiao J, Li Y, Chen S, Fan D 2020 J. Lightwave Technol. 38 1712Google Scholar

    [95]

    Willner A E, Li L, Xie G, Ren Y, Huang H, Yue Y, Ahmed N, Willner M J, Willner A J, Yan Y, Zhao Z, Wang Z, Liu C, Tur M, Ashrafi S 2016 Photon. Res. 4 B5Google Scholar

    [96]

    Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas'ko V, Barnett S, Franke-Arnold S 2004 Opt. Express 12 5448Google Scholar

    [97]

    Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F 2012 New J. Phys. 14 033001Google Scholar

    [98]

    Wang J, Yang J Y , Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, Willner A E 2012 Nat. Photonics 6 488Google Scholar

    [99]

    Li L, Zhang R, Zhao Z, Xie G, Liao P, Pang K, Song H, Liu C, Ren Y, Labroille G, Jian P, Starodubov D, Lynn B, Bock R, Tur M, Willner A E 2017 Sci. Rep. 7 17427Google Scholar

    [100]

    Vallone G, D'Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014 Phys. Rev. Lett. 113 060503Google Scholar

    [101]

    Wang A D, Zhu L, Chen S, Du C, Mo Q, Wang J 2016 Opt. Express 24 11716Google Scholar

    [102]

    Zhu L, Liu J, Mo Q, Du C, Wang J 2016 Opt. Express 24 16934Google Scholar

    [103]

    Lavery M P J, Peuntinger C, Gunthner K, Banzer P, Elser D, Boyd R W, Padgett M J, Marquardt C, Leuchs G 2017 Sci. Adv. 3 e1700552Google Scholar

    [104]

    Heng X B, Gan J L, Zhang Z S, Li J, Li M Q, Zhao H, Qian Q, Xu S H, Yang Z M 2018 Opt. Express 26 17429Google Scholar

    [105]

    Liu J, Zhang J, Liu J, Lin Z , Li Z, Lin Z, Zhang J, Huang C, Mo S, Shen L, Lin S, Chen Y, Gao R, Zhang L, Lan X, Cai X, Li Z, Yu S 2022 Light Sci. Appl. 11 202Google Scholar

  • [1] 张卓, 张景风, 孔令军. 基于光束偏移器的光的轨道角动量分束器.  , 2024, 73(7): 074201. doi: 10.7498/aps.73.20231874
    [2] 徐梦敏, 李晓庆, 唐荣, 季小玲. 风控热晕对双模涡旋光束大气传输的轨道角动量和相位奇异性的影响.  , 2023, 72(16): 164202. doi: 10.7498/aps.72.20230684
    [3] 赵丽娟, 姜焕秋, 徐志钮. 螺旋扭曲双包层-三芯光子晶体光纤用于轨道角动量的生成.  , 2023, 72(13): 134201. doi: 10.7498/aps.72.20222405
    [4] 赵丽娟, 赵海英, 徐志钮. 一种可用于轨道角动量的受激布里渊放大的光子晶体光纤放大器.  , 2022, 71(7): 074206. doi: 10.7498/aps.71.20211909
    [5] 刘瑞熙, 马磊. 海洋湍流对光子轨道角动量量子通信的影响.  , 2022, 71(1): 010304. doi: 10.7498/aps.71.20211146
    [6] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器.  , 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [7] 蒋基恒, 余世星, 寇娜, 丁召, 张正平. 基于平面相控阵的轨道角动量涡旋电磁波扫描特性.  , 2021, 70(23): 238401. doi: 10.7498/aps.70.20211119
    [8] 崔粲, 王智, 李强, 吴重庆, 王健. 长周期多芯手征光纤轨道角动量的调制.  , 2019, 68(6): 064211. doi: 10.7498/aps.68.20182036
    [9] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性.  , 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [10] 付时尧, 高春清. 利用衍射光栅探测涡旋光束轨道角动量态的研究进展.  , 2018, 67(3): 034201. doi: 10.7498/aps.67.20171899
    [11] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究.  , 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [12] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统.  , 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [13] 付栋之, 贾俊亮, 周英男, 陈东旭, 高宏, 李福利, 张沛. 利用Sagnac干涉仪实现光子轨道角动量分束器.  , 2015, 64(13): 130704. doi: 10.7498/aps.64.130704
    [14] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究.  , 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [15] 李铁, 谌娟, 柯熙政, 吕宏. 大气信道中单光子轨道角动量纠缠特性的研究.  , 2012, 61(12): 124208. doi: 10.7498/aps.61.124208
    [16] 刘曼, 陈小艺, 李海霞, 宋洪胜, 滕树云, 程传福. 利用干涉光场的相位涡旋测量拉盖尔-高斯光束的轨道角动量.  , 2010, 59(12): 8490-8498. doi: 10.7498/aps.59.8490
    [17] 柯熙政, 卢宁, 杨秦岭. 单光子轨道角动量的传输特性研究.  , 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [18] 吕宏, 柯熙政. 具有轨道角动量光束入射下的单球粒子散射研究.  , 2009, 58(12): 8302-8308. doi: 10.7498/aps.58.8302
    [19] 苏志锟, 王发强, 路轶群, 金锐博, 梁瑞生, 刘颂豪. 基于光子轨道角动量的密码通信方案研究.  , 2008, 57(5): 3016-3021. doi: 10.7498/aps.57.3016
    [20] 高明伟, 高春清, 林志锋. 扭转对称光束的产生及其变换过程中的轨道角动量传递.  , 2007, 56(4): 2184-2190. doi: 10.7498/aps.56.2184
计量
  • 文章访问数:  3672
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 修回日期:  2023-10-07
  • 上网日期:  2023-10-12
  • 刊出日期:  2023-10-20

/

返回文章
返回
Baidu
map