搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CEEMDAN联合小波阈值算法在水下激光雷达中抑制散射杂波的应用

樊超阳 李朝锋 杨苏辉 刘欣宇 廖英琦

引用本文:
Citation:

CEEMDAN联合小波阈值算法在水下激光雷达中抑制散射杂波的应用

樊超阳, 李朝锋, 杨苏辉, 刘欣宇, 廖英琦

Application of CEEMDAN combined wavelet threshold denoising algorithm to suppressing scattering cluster in underwater lidar

Fan Chao-Yang, Li Chao-Feng, Yang Su-Hui, Liu Xin-Yu, Liao Ying-Qi
PDF
HTML
导出引用
  • 水下激光雷达回波信号中往往含有大量散射噪声. 为了能够有效抑制散射噪声, 提高水下激光雷达测距精度, 提出了基于自适应完备噪声经验模态分解(CEEMDAN)与小波阈值相结合的去噪新方法. 首先通过相关系数法对自适应完备噪声经验模态分解得到的本征模态函数(IMF)进行筛选; 然后对筛选后的本征模态函数进行小波阈值去噪, 进一步去除本征模态函数中的噪声成分; 最后将去噪后的本征模态函数进行信号重构得到去噪后信号. 将该方法应用到不同衰减系数水体的强度调制连续光水下测距实验, 使用白色聚氯乙烯(PVC)反射板为探测目标, 在3.75个衰减长度时, 直接采用相关极值确定延时, 测距误差达到19.2 cm; 应用该方法处理后, 测距误差减小到6.2 cm, 有效提高测距精度.
    The echo of underwater lidar often contains a significant quantity of scattering clutters. In order to effectively suppress this scattering clutter and improve the ranging accuracy of underwater lidar, a novel denoising method based on complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet threshold denoising is proposed.The CEEMDAN-wavelet threshold denoising algorithm uses the correlation coefficient to select intrinsic mode function (IMF) components obtained from the CEEMDAN decomposition. The IMFs, which are more closely related to the original signal, are selected. Then, the wavelet thresholding denoising algorithm is applied to each of the selected IMFs to perform additional denoising. For each IMF component, specific threshold values are calculated based on their frequency and amplitude characteristics. Subsequently, the wavelet coefficients of the IMF components are processed by using these threshold values. Finally, the denoised IMF components are combined and reconstructed to obtain the final denoised signal. Applying the wavelet threshold denoising algorithm to IMF components can effectively remove noise components that cannot be removed by traditional CEEMDAN partial reconstruction methods. By using the threshold value calculated based on the characteristics of each IMF component, the wavelet thresholding denoising process is improved in comparison with directly using a single threshold value. This approach enhances the algorithm’s adaptability and enables more effective removal of noise from the signal.We apply the proposed method to underwater ranging experiments. A 532 nm intensity-modulated continuous wave laser is used as a light source. Ranging is performed for a target in water with varying attenuation coefficients. A white polyvinyl chloride (PVC) reflector is used as a target. When the correlation extreme value is directly used to determine the delay at a distance of 3.75 attenuation length, it results in a ranging error of 19.2 cm. However, after applying the proposed method, the ranging error is reduced to 6.2 cm, thus effectively improving the ranging accuracy. These results demonstrate that the method has a significant denoising effect in underwater lidar system.
      通信作者: 杨苏辉, suhuiyang@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61835001)资助的课题.
      Corresponding author: Yang Su-Hui, suhuiyang@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61835001).
    [1]

    Weiling C, Ke G, Weisi L, Fei Y, En C 2019 IEEE T. Circ. Syst. Vid. 30 334Google Scholar

    [2]

    Flores N Y, Oswald S B, Leuven R S E W, Collas F P L 2022 Front. Env. Sci. 10 835Google Scholar

    [3]

    金鼎坚, 吴芳, 于坤, 李奇, 张宗贵, 张永军, 张文凯, 李勇志, 冀欣阳, 高宇, 李京, 龚建华 2020 红外与激光工程 49 9

    Jin D J, Wu F, Yu K, Li Q, Zhang Z G, Zhang Y J, Zhang W K, Li Y Z, Ji X Y, Gao Y, Li J, Gong J H 2020 Infrared Laser Eng. 49 9

    [4]

    Gangelhoff J, Werner C S, Reiterer A 2022 Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2022 Berlin, Germany, November 6–10, 2022 p24

    [5]

    Zhou G Q, Zhou X, Li W H, Zhao D W, Song B, Xu C, Zhang H T, Liu Z X, Xu J S, Lin G C, Deng R H, Hu H C, Tan Y Z, Lin J C, Yang J Z, Nong X Q, Li C Y, Zhao Y Q, Wang C, Zhang L P, Zou L P 2022 Remote Sens. 14 5880Google Scholar

    [6]

    Liao Y, Yang S, Li K, Hao Y, Li Z, Wang X, Zhang J 2022 IEEE Photonics J. 14 1Google Scholar

    [7]

    Zha B T, Yuan H L, Tan Y Y 2018 Opt. Commun. 431 81Google Scholar

    [8]

    Li G Y, Zhou Q, Xu G Q, Wang X, Han W J, Wang J, Zhang G D, Zhang Y F, Yuan Z A, Song S J, Gu S T, Chen F B, Xu K, Tian J S, Wan J W, Xie X P, Cheng G H 2021 Opt. Laser Technol. 142 107234Google Scholar

    [9]

    Mullen L J, Contarino V M 2000 IEEE Microw. Mag. 1 42Google Scholar

    [10]

    Pellen F, Guern Y, Cariou J, Lotrian J, Olivard P 2001 J. Phys. D Appl. Phys. 34 1122Google Scholar

    [11]

    Mullen L, Laux A, Cochenour B 2009 Appl. Opt. 48 2607Google Scholar

    [12]

    Torres M E, Colominas M A, Schlotthauer G, Flandrin P 2011 2011 IEEE International Conference on Acoustics, Speech, And Signal Processing Prague, Czech Republic, May 22–27, 2011 p4144

    [13]

    Zhang N, Lin P, Xu L 2020 IOP Conference Series: Materials Science and Engineering Sanya, China, December 12–15, 2019 p012073

    [14]

    Gao L, Gan Y, Shi J C 2022 Appl. Intell. 52 10270Google Scholar

    [15]

    Donoho D L, Johnstone I M 1994 IEEE Transaction on IT 81 425Google Scholar

    [16]

    焦新涛 2014 博士学位论文 (广州: 华南理工大学)

    Jiao X T 2014 Ph. D. Dissertation (Guangzhou: South China University of Technology

    [17]

    Norden E H, Zheng S, Steven R L, Manli C W, Hsing H S, Quanan Z, Nai-Chyuan Y, Chi C T, Henry H L 1998 P. Roy. Soc. A-Math. Phys. 454 903Google Scholar

    [18]

    行鸿彦, 张强, 徐伟 2015 64 040506Google Scholar

    Xing H Y, Zhang Q, Xu W 2015 Acta Phys. Sin. 64 040506Google Scholar

    [19]

    Wu Z, Huang N E 2009 Adv. Adaptive Data Analysis 1 1Google Scholar

    [20]

    Abdel-Ouahab B, Jean-Christophe C 2007 IEEE T. Instrum. Meas. 56 2196Google Scholar

  • 图 1  各种阈值函数比较图

    Fig. 1.  Comparison of various threshold functions.

    图 2  方法流程图

    Fig. 2.  Method flowchart.

    图 3  目标回波信号的波形和频谱图 (a) 波形图; (b) 频谱图

    Fig. 3.  Waveform and frequency spectrum of target echo signal: (a) Waveform; (b) frequency spectrum.

    图 4  目标回波信号分解得到的IMF波形图

    Fig. 4.  IMF waveform of target echo signal decomposition.

    图 5  去噪后信号的波形(a)和频谱(b)图

    Fig. 5.  Waveform (a) and frequency spectrum (b) of the signal after denoising.

    图 6  激光水下探测实验系统

    Fig. 6.  Laser underwater detection experimental system

    图 7  不同衰减系数和调制频率下的测距结果 (a), (b) 衰减系数c = 1.5 m–1, 调制频率分别为200 MHz和300 MHz时的测距结果; (c), (d) 衰减系数c = 2.5 m–1, 调制频率分别为200 MHz和300 MHz时的测距结果

    Fig. 7.  Ranging results under different attenuation coefficients and modulation frequencies: (a), (b) Ranging results when the attenuation coefficient is c = 1.5 m–1 and the modulation frequency is 200 MHz and 300 MHz; (c), (d) ranging results when the attenuation coefficient is c = 2.5 m–1 and the modulation frequency is 200 MHz and 300 MHz.

    图 8  不同衰减长度下的测量误差

    Fig. 8.  Ranging errors at different attenuation lengths.

    Baidu
  • [1]

    Weiling C, Ke G, Weisi L, Fei Y, En C 2019 IEEE T. Circ. Syst. Vid. 30 334Google Scholar

    [2]

    Flores N Y, Oswald S B, Leuven R S E W, Collas F P L 2022 Front. Env. Sci. 10 835Google Scholar

    [3]

    金鼎坚, 吴芳, 于坤, 李奇, 张宗贵, 张永军, 张文凯, 李勇志, 冀欣阳, 高宇, 李京, 龚建华 2020 红外与激光工程 49 9

    Jin D J, Wu F, Yu K, Li Q, Zhang Z G, Zhang Y J, Zhang W K, Li Y Z, Ji X Y, Gao Y, Li J, Gong J H 2020 Infrared Laser Eng. 49 9

    [4]

    Gangelhoff J, Werner C S, Reiterer A 2022 Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2022 Berlin, Germany, November 6–10, 2022 p24

    [5]

    Zhou G Q, Zhou X, Li W H, Zhao D W, Song B, Xu C, Zhang H T, Liu Z X, Xu J S, Lin G C, Deng R H, Hu H C, Tan Y Z, Lin J C, Yang J Z, Nong X Q, Li C Y, Zhao Y Q, Wang C, Zhang L P, Zou L P 2022 Remote Sens. 14 5880Google Scholar

    [6]

    Liao Y, Yang S, Li K, Hao Y, Li Z, Wang X, Zhang J 2022 IEEE Photonics J. 14 1Google Scholar

    [7]

    Zha B T, Yuan H L, Tan Y Y 2018 Opt. Commun. 431 81Google Scholar

    [8]

    Li G Y, Zhou Q, Xu G Q, Wang X, Han W J, Wang J, Zhang G D, Zhang Y F, Yuan Z A, Song S J, Gu S T, Chen F B, Xu K, Tian J S, Wan J W, Xie X P, Cheng G H 2021 Opt. Laser Technol. 142 107234Google Scholar

    [9]

    Mullen L J, Contarino V M 2000 IEEE Microw. Mag. 1 42Google Scholar

    [10]

    Pellen F, Guern Y, Cariou J, Lotrian J, Olivard P 2001 J. Phys. D Appl. Phys. 34 1122Google Scholar

    [11]

    Mullen L, Laux A, Cochenour B 2009 Appl. Opt. 48 2607Google Scholar

    [12]

    Torres M E, Colominas M A, Schlotthauer G, Flandrin P 2011 2011 IEEE International Conference on Acoustics, Speech, And Signal Processing Prague, Czech Republic, May 22–27, 2011 p4144

    [13]

    Zhang N, Lin P, Xu L 2020 IOP Conference Series: Materials Science and Engineering Sanya, China, December 12–15, 2019 p012073

    [14]

    Gao L, Gan Y, Shi J C 2022 Appl. Intell. 52 10270Google Scholar

    [15]

    Donoho D L, Johnstone I M 1994 IEEE Transaction on IT 81 425Google Scholar

    [16]

    焦新涛 2014 博士学位论文 (广州: 华南理工大学)

    Jiao X T 2014 Ph. D. Dissertation (Guangzhou: South China University of Technology

    [17]

    Norden E H, Zheng S, Steven R L, Manli C W, Hsing H S, Quanan Z, Nai-Chyuan Y, Chi C T, Henry H L 1998 P. Roy. Soc. A-Math. Phys. 454 903Google Scholar

    [18]

    行鸿彦, 张强, 徐伟 2015 64 040506Google Scholar

    Xing H Y, Zhang Q, Xu W 2015 Acta Phys. Sin. 64 040506Google Scholar

    [19]

    Wu Z, Huang N E 2009 Adv. Adaptive Data Analysis 1 1Google Scholar

    [20]

    Abdel-Ouahab B, Jean-Christophe C 2007 IEEE T. Instrum. Meas. 56 2196Google Scholar

  • [1] 李朝锋, 王振, 刘欣宇, 杨苏辉, 徐震, 樊超阳. 基于VMD-ICA的水下激光雷达抗散射信号处理方法.  , 2024, 73(9): 094203. doi: 10.7498/aps.73.20231993
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法.  , 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 刘欣宇, 杨苏辉, 廖英琦, 林学彤. 基于小波变换的激光水下测距.  , 2021, 70(18): 184205. doi: 10.7498/aps.70.20210569
    [4] 汪书潮, 苏秀琴, 朱文华, 陈松懋, 张振扬, 徐伟豪, 王定杰. 基于弹性变分模态提取的时间相关单光子计数信号去噪.  , 2021, 70(17): 174304. doi: 10.7498/aps.70.20210149
    [5] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法.  , 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [6] 李静和, 何展翔, 杨俊, 孟淑君, 李文杰, 廖小倩. 曲波域统计量自适应阈值探地雷达数据去噪技术.  , 2019, 68(9): 090501. doi: 10.7498/aps.68.20182061
    [7] 牛明生, 王贵师. 基于可调谐二极管激光技术利用小波去噪在2.008 μm波段对δ13CO2的研究(已撤稿).  , 2017, 66(2): 024202. doi: 10.7498/aps.66.024202
    [8] 张玉燕, 周航, 闫美素. 基于经验模态分解的自混合干涉相位提取方法研究.  , 2015, 64(5): 054203. doi: 10.7498/aps.64.054203
    [9] 曲建岭, 王小飞, 高峰, 周玉平, 张翔宇. 基于复数据经验模态分解的噪声辅助信号分解方法.  , 2014, 63(11): 110201. doi: 10.7498/aps.63.110201
    [10] 刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华. 连续波差分吸收激光雷达测量大气CO2.  , 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [11] 陈浩, 华灯鑫, 张毅坤, 朱承炫. 米散射激光雷达剖面数据三次样条垂直水平插值法.  , 2014, 63(15): 154204. doi: 10.7498/aps.63.154204
    [12] 唐洁. 基于聚合经验模态分解方法的OJ 287 射电流量变化周期分析.  , 2013, 62(12): 129701. doi: 10.7498/aps.62.129701
    [13] 王文波, 张晓东, 汪祥莉. 基于独立成分分析和经验模态分解的混沌信号降噪.  , 2013, 62(5): 050201. doi: 10.7498/aps.62.050201
    [14] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪.  , 2013, 62(20): 209701. doi: 10.7498/aps.62.209701
    [15] 王文波, 张晓东, 汪祥莉. 脉冲星信号的经验模态分解模态单元比例萎缩消噪算法.  , 2013, 62(6): 069701. doi: 10.7498/aps.62.069701
    [16] 刘厚通, 陈良富, 苏林. Fernald前向积分用于机载激光雷达气溶胶后向散射系数反演的理论研究.  , 2011, 60(6): 064204. doi: 10.7498/aps.60.064204
    [17] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响.  , 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [18] 侯王宾, 刘天琪, 李兴源. 基于经验模态分解滤波的低频振荡Prony分析.  , 2010, 59(5): 3531-3537. doi: 10.7498/aps.59.3531
    [19] 侯 威, 封国林, 董文杰, 李建平. 利用排列熵检测近40年华北地区气温突变的研究.  , 2006, 55(5): 2663-2668. doi: 10.7498/aps.55.2663
    [20] 龚志强, 邹明玮, 高新全, 董文杰. 基于非线性时间序列分析经验模态分解和小波分解异同性的研究.  , 2005, 54(8): 3947-3957. doi: 10.7498/aps.54.3947
计量
  • 文章访问数:  2169
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-08-03
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map