-
初步反演结果表明,Fernald前向积分法(FFIM)能够用于机载大气探测激光雷达气溶胶后向散射系数的反演,但相应的理论解释没见国内外相关文献报道.根据合肥地基大气探测激光雷达2008年2月27日的探测数据模拟得到的机载激光雷达数据,对FFIE用于机载大气探测激光雷达气溶胶后向散射系数的反演结果进行了定量分析,分析表明:当反演标定点的高度选在10 km左右时,FFIM能够用于机载大气探测激光雷达气溶胶后向散射系数反演的主要原因有3个:1)Fernald前向积分方程(FFIE)分母中两项的差值一般远大于零,
-
关键词:
- 大气光学 /
- Fernald前向积分法 /
- 机载大气探测激光雷达 /
- 气溶胶后向散射系数
Preliminary inversion results show that the Fernald forward integration method (FFIM) can be used to calculate aerosol backscatter coefficient from airborne atmosphere detecting lidar. But the corresponding theoretical explanations have not been found in relevant papers. In this paper,We use the simulated data based on the ground-based atmosphere detecting radar in Hefei lidar data on February 27, 2008, to quantitatively analyze the above inversion results obtained by the FFIM . Results show that there are three main reasons that the FFIM can be used to calculate aerosol backscatter coefficient when the altitude of lidar calibration points is about 10km. First, the inversion error cannot be infinite and negative results will not appear because the difference batween the denominator items in the Fernald forward integration equation is always greater than zero. Second, inversion error is no more than 0.006 when calibration error is 100%, which is 0.6 percent of the denominator value. Third, Molecule backscatter coefficient is dominant in the calibration item of the Fernald forward integration equation. Big fluctuation range of aerosol backscatter coefficient in the calibration points has little influence on the calibration item value. In general, the atmosphere structure that has a small density in the upper layer but a big density in the lowerlayer, and a high calibration position are two basic reasons for which the FFIM can be applied to the aerosol backscatter coefficient inversion through using airborne atmosphere detecting lidar data.-
Keywords:
- atmospheric optics /
- Fernald forward integration method /
- airborne atmosphere detecting lidar /
- aerosol backscatter coefficient
[1] Mao J T, Z hang J H, Wang M H 2002 Acta Meteorolog. Sin. 60 625(in Chinese)[毛节泰、 张军华、王美华 2002 气象学报 60 625]
[2] Wang M, Hu S X, Fang X, Wang S L, Cao K F, Zhao P T, Fan G Q, Wang Y J 2009 Acta Phys. Sin. 58 5091(in Chinese)[王 敏、胡顺星、方 欣、汪少林、曹开法、赵培涛、范广强、王英俭 2009 58 5091]
[3] Liu QJ, Yang L, Wang J Y, Zuo H Y, Luo S R, Zheng Y C 2009 Acta Phys. Sin. 58 7376(in Chinese)[刘巧君、杨 林、王劼予、左浩毅、罗时荣、郑玉臣 2009 58 7376]
[4] Liu H T, Ge Z Q, Wang Z, Z, Huang W, Zhou J 2008 Acta Opt. Sin. 28 1837(in Chinese)[刘厚通、葛占旗、王珍珠、黄 威、周 军 2008 光学学报 28 1837]
[5] Gadhavi H, Jayaraman A 2006 Ann. Geophy. 24 2461
[6] Liu H T 2008 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science) (in Chinese) [刘厚通 博士学位论文 (合肥:中国科学院合肥物质科学研究院)]
[7] Fernald F G 1984 Appl. Opt. 23 652
[8] Sasano Y, Kobayashi T 1995 National Institute for Environmental Studies (Final Reports) p82
-
[1] Mao J T, Z hang J H, Wang M H 2002 Acta Meteorolog. Sin. 60 625(in Chinese)[毛节泰、 张军华、王美华 2002 气象学报 60 625]
[2] Wang M, Hu S X, Fang X, Wang S L, Cao K F, Zhao P T, Fan G Q, Wang Y J 2009 Acta Phys. Sin. 58 5091(in Chinese)[王 敏、胡顺星、方 欣、汪少林、曹开法、赵培涛、范广强、王英俭 2009 58 5091]
[3] Liu QJ, Yang L, Wang J Y, Zuo H Y, Luo S R, Zheng Y C 2009 Acta Phys. Sin. 58 7376(in Chinese)[刘巧君、杨 林、王劼予、左浩毅、罗时荣、郑玉臣 2009 58 7376]
[4] Liu H T, Ge Z Q, Wang Z, Z, Huang W, Zhou J 2008 Acta Opt. Sin. 28 1837(in Chinese)[刘厚通、葛占旗、王珍珠、黄 威、周 军 2008 光学学报 28 1837]
[5] Gadhavi H, Jayaraman A 2006 Ann. Geophy. 24 2461
[6] Liu H T 2008 Ph. D. Dissertation (Hefei: Hefei Institutes of Physical Science) (in Chinese) [刘厚通 博士学位论文 (合肥:中国科学院合肥物质科学研究院)]
[7] Fernald F G 1984 Appl. Opt. 23 652
[8] Sasano Y, Kobayashi T 1995 National Institute for Environmental Studies (Final Reports) p82
计量
- 文章访问数: 11350
- PDF下载量: 988
- 被引次数: 0