搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温下CO的近红外波段宽光谱吸收测量

王亚民 吴昊龙 陶蒙蒙 李国华 王晟 叶景峰

引用本文:
Citation:

室温下CO的近红外波段宽光谱吸收测量

王亚民, 吴昊龙, 陶蒙蒙, 李国华, 王晟, 叶景峰

Hyperspectral absorption of CO in the near infrared band at room temperature

Wang Ya-Min, Wu Hao-Long, Tao Meng-Meng, Li Guo-Hua, Wang Sheng, Ye Jing-Feng
PDF
HTML
导出引用
  • CO是含碳化合物在燃烧过程中产生的一种重要中间物质, 通过对CO的吸收光谱测量可以实现对燃烧过程的诊断. 针对CO的测量多使用传统的单吸收线和双吸收线技术, 在基于吸收光谱技术的燃烧场二维参数分布测量中, 需设置大量的光束投影以满足空间分辨要求. 宽光谱吸收技术可以在单次扫描内获得整个宽带扫描波段的吸收信息, 与传统的分立谱线窄带吸收技术相比, 具有非常明显的技术优势. 使用宽光谱吸收技术可以大大减少光束投影数量要求, 有效降低系统复杂度, 改善参数反演鲁棒性, 提高测量系统适用性. 但是, 目前针对CO的宽光谱吸收测量则鲜有报道, 亟需开展相关的基础研究工作. 本文利用1.5 μm波段宽带可调谐光源对室温中的CO开展了宽光谱吸收测量实验, 并对不同压强下CO的吸收特性进行了对比, 实验测量结果与HITRAN2016数据库相吻合. 利用1565—1570 nm范围内的实测宽光谱吸收数据, 通过一阶导数法对CO温度和摩尔分数进行了反演; 虽然宽带吸收光谱各吸收峰强度测量值存在一定畸变, 但依然得到了准确的反演结果, 温度和摩尔分数反演误差均在5%以内, 验证了宽光谱吸收测量的可靠性, 为后续基于CO宽光谱吸收测量的燃烧流场二维层析诊断提供了技术支撑.
    As an important medial product in the combustion process of carbon-based compounds, CO serves as one of the preferable candidates for combustion diagnosis in absorption spectrum. So far, most of researches have focused on the conventional one-line or dual-line technique, which requires a number of beam projections for two-dimension (2D) tomography of combustion field. Hyperspectral absorption spectroscopy enables continuous acquisition of absorption information over a whole absorption band, rather than one or two discrete absorption lines, demonstrating remarkable advantage over the traditional one-line and dual-line techniques. Hyperspectral absorption spectroscopy can not only reduce the system complexity with limited projections for high spatial resolution 2D tomography, but also improve the system applicability by refining the measurement robustness. However, up to now, little attention has been paid to hyperspectral absorption of CO. Here, by using a wideband tunable laser source around 1.5 μm, experiments are conducted at room temperature to investigate the hyperspectral absorption characteristics of CO in the near infrared band. Absorptions under different pressure conditions are compared with each other. And, the measured results are consistent with the HITRAN2016 database. With the measured hyperspectral absorption information in the 1565–1570 nm range, temperature and mole fraction of CO are derived by the first derivative method. Despite the distortion of the recorded absorption peaks, accurate results are obtained with measurement errors within 5% for both temperature and mole fraction, thereby validating the reliability of hyperspectral absorption technique for CO. And, this research is instructive for future 2D tomography of combustion fields based on hyperspectral absorption of CO.
      通信作者: 陶蒙蒙, taomengmeng@nint.ac.cn ; 叶景峰, yejingfeng@nint.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62105268, 91841303, 52106222)和激光与物质相互作用国家重点实验室基金(批准号: SKLLIM2009, SKLLIM2110)资助的课题.
      Corresponding author: Tao Meng-Meng, taomengmeng@nint.ac.cn ; Ye Jing-Feng, yejingfeng@nint.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62105268, 91841303, 52106222) and the Foundation of State Key Laboratory of Laser Interaction with Matter, China (Grant Nos. SKLLIM2009, SKLLIM2110).
    [1]

    陈健 2019 硕士学位论文(天津: 天津大学)

    Chen J 2019 M. S. Thesis (Tianjin: Tianjin University

    [2]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [3]

    Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar

    [4]

    张雅琪 2019 硕士学位论文(杭州: 浙江大学)

    Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University

    [5]

    Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132

    [7]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar

    [8]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [9]

    刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284

    Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284

    [10]

    李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar

    Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar

    [11]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar

    [12]

    Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33

    [13]

    彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar

    Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar

    [14]

    Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7

    [15]

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60Google Scholar

    [16]

    Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar

    [17]

    Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29

    [18]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [19]

    Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [20]

    Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University

    [21]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [22]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [23]

    Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar

    [24]

    Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar

    [25]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [26]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [27]

    Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar

    [28]

    Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar

    [29]

    Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar

    [30]

    Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar

    [31]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar

    [32]

    Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar

    [33]

    Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar

    [34]

    Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar

    [35]

    Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar

    [36]

    Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar

    [37]

    陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 71 114203Google Scholar

    Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar

    [38]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

  • 图 1  HITRAN2016光谱数据库计算得到的室温下CO在1.6 μm附近的吸收谱线

    Fig. 1.  Absorption lines of CO around 1.6 μm at room temperature in HITRAN2016 database.

    图 2  CO宽光谱吸收测量实验光路图. WTLD, 宽带调谐光源; PD, 探测器; DAQ, 数采系统

    Fig. 2.  Schematic diagram of the hyperspectral absorption experiment. WTLD, wideband tunable laser diode; PD, photo-detector; DAQ, data acquisition.

    图 3  实验测得的吸收信号 (a)原始探测信号; (b)吸收光谱信号

    Fig. 3.  Recorded absorption signal: (a) Detected original signal; (b) absorption signal.

    图 4  实测信号与理论模拟的对比

    Fig. 4.  Comparison between theoretical absorption signal and experimental results.

    图 5  激光器扫描过程中采样点与波长之间的对应关系

    Fig. 5.  Relationship between the sampling point and the output wavelength.

    图 6  不同压强下CO在1567 nm附近的吸收谱 (a)理论模拟光谱; (b)实测吸收光谱及其洛伦兹拟合

    Fig. 6.  Detailed absorption spectra of CO around 1567 nm at different pressures: (a) Theoretical absorption spectra; (b) measured absorption spectra and corresponding Lorentz fit.

    图 7  1565—1570 nm实测CO宽光谱吸收数据(a)与理论模拟数据(b)

    Fig. 7.  Measured hyperspectral absorption spectrum (a) and simulated hyperspectral absorption spectrum (b) of CO in the 1565—1570 nm range.

    图 8  实测吸收光谱数据与理论模拟数据之间的对比 (a) 实测吸收光谱数据一阶导数与理论模拟数据一阶导数; (b) 不同温度下实测吸收光谱数据一阶导数与理论模拟数据一阶导数之间的RMSE

    Fig. 8.  Comparison between measured and theoretical spectra: (a) First derivatives of the measured and theoretical spectra; (b) RMSE between measured and theoretical spectra at different temperatures.

    图 9  300 K温度下, 实测数据一阶导数与理论模拟数据一阶导数的分布关系

    Fig. 9.  Relationship between the first derivative of the measured spectrum and that of the theoretical spectrum at 300 K.

    表 1  双线法反演得到的温度信息

    Table 1.  Temperature derived by dual-line method

    Lines T/K
    L1 L2 L3 L4
    L1 401.66 318.64 342.92
    L2 401.66 259.62 316.15
    L3 318.64 259.61 417.04
    L4 342.92 316.15 417.03
    下载: 导出CSV
    Baidu
  • [1]

    陈健 2019 硕士学位论文(天津: 天津大学)

    Chen J 2019 M. S. Thesis (Tianjin: Tianjin University

    [2]

    王振, 杜艳君, 丁艳军, 李政, 彭志敏 2022 71 044205Google Scholar

    Wang Z, Du Y J, Ding Y J, Li Z, Peng Z M 2022 Acta Phys. Sin. 71 044205Google Scholar

    [3]

    Devolder P, Dusanter S, Lemoine B, Fittschen C 2006 Chem. Phys. Lett. 417 154Google Scholar

    [4]

    张雅琪 2019 硕士学位论文(杭州: 浙江大学)

    Zhang Y Q 2019 M. S. Thesis (Hangzhou: Zhejiang University

    [5]

    Fu B, Zhang C, Lü W, Sun J, Shang C, Cheng Y, Xu L 2022 Appl. Spectrosc. Rev. 57 112Google Scholar

    [6]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2017 Prog. Energy Combust. Sci. 60 132

    [7]

    Bolshov M A, Kuritsyn Y A, Romanovskii Y V 2015 Spectrochim. Acta, Part B 106 45Google Scholar

    [8]

    Hanson R K, Davidson D F 2014 Prog. Energy Combust. Sci. 44 103Google Scholar

    [9]

    刘晶儒, 胡志云, 张振荣, 关小伟, 王晟, 陶波, 叶景峰, 张立荣, 黄梅生, 赵新艳, 叶锡生 2011 光学精密工程 19 284

    Liu J R, Hu Z Y, Zhang Z R, Guan X W, Wang S, Tao B, Ye J F, Zhang L R, Huang M S, Zhao X Y, Ye X S 2011 Opt. Precis. Eng. 19 284

    [10]

    李留成, 多丽萍, 周冬建, 王增强, 王元虎, 唐书凯 2019 红外与激光工程 48 0805011Google Scholar

    Li L C, Duo L P, Zhou D J, Wang Z Q, Wang Y H, Tang S K 2019 Infrared Laser Eng. 48 0805011Google Scholar

    [11]

    Wagner S, Klein M, Kathrotia T, Riedel U, Kissel T, Dreizler A, Ebert V 2012 Appl. Phys. B 109 533Google Scholar

    [12]

    Sur R, Sun K, Jeffries J B, Hanson R K, Pummill R J, Waind T, Wagner D R, Whitty K J 2014 Appl. Phys. B 116 33

    [13]

    彭于权, 阚瑞峰, 许振宇, 夏晖晖, 聂伟, 张步强 2018 中国激光 45 0911010Google Scholar

    Peng Y Q, Kan R F, Xu Z Y, Xia H H, Nie W, Zhang B Q 2018 Chin. J. Lasers 45 0911010Google Scholar

    [14]

    Sane A, Satijia A, Lucht R P, Gore J P 2014 Appl. Phys. B 117 7

    [15]

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60 [胡尚炜, 殷可为, 涂晓波, 杨富荣, 陈爽 2021 实验流体力学 35 60Google Scholar

    Hu S W, Yin K W, Tu X B, Yang F R, Chen S 2021 J. Exp. Fluid Mech. 35 60Google Scholar

    [16]

    Sappey A D, Masterson P, Huelson E, Howell J, Estes M, Hofvander H, Jobson A 2011 Combust. Sci. Technol. 183 1282Google Scholar

    [17]

    Sepman A, Ogren Y, Gullberg M, Wiinikka H 2016 Appl. Phys. B 122 29

    [18]

    Ma L, Li X, Sanders S T, Caswell A W, Roy S, Plemmons D H, Gord J R 2013 Opt. Express 21 1152Google Scholar

    [19]

    Tao M M, Tao B, Hu Z Y, Feng G B, Ye X S, Zhao J 2017 Opt. Express 25 32386Google Scholar

    [20]

    Sanders S T 2001 Ph. D. Dissertation (Stanford, CA: Stanford University

    [21]

    Huber R, Wojtkowski M, Fujimoto J G 2006 Opt. Express 14 3225Google Scholar

    [22]

    陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军 2020 69 034205Google Scholar

    Tao M M, Tao B, Ye J F, Shen Y L, Huang K, Ye X S, Zhao J 2020 Acta Phys. Sin. 69 034205Google Scholar

    [23]

    Grauer S J, Emmert J, Sanders S T, Wagner S, Daun K J 2019 Meas. Sci. Tchnol. 30 105401Google Scholar

    [24]

    Kranendonk L A, Caswell A W, Sanders S T 2007 Appl. Opt. 46 4117Google Scholar

    [25]

    Caswell A W, Roy S, An X, Sanders S T, Schauer F R, Gord J R 2013 Appl. Opt. 52 2893Google Scholar

    [26]

    Cai W W, Ewing D J, Ma L 2008 Comput. Phys. Commun. 179 250Google Scholar

    [27]

    Ma L, Cai W W 2008 Appl. Opt. 47 3751Google Scholar

    [28]

    Ma L, Cai W W 2008 Appl. Opt. 47 4186Google Scholar

    [29]

    Cai W W, Kaminski C F 2014 Appl. Phys. Lett. 104 034101Google Scholar

    [30]

    Wright P, Garcia-Stewart C A, Carey S J, Hindle F P, Pegrum S H, Colbourne S M, Turner P J, Hurr W J, Litt T J, Murray S C, Crossley S D, Ozanyan K B, McCann H 2005 Appl. Opt. 44 6578Google Scholar

    [31]

    Wang F, Cen K F, Li N, Jeffries J B, Huang Q X, Yan J H, Chi Y 2010 Meas. Sci. Technol. 21 045301Google Scholar

    [32]

    Deguchi Y, Kamimoto T, Kiyota Y 2015 Flow Meas. Instrum. 46 312Google Scholar

    [33]

    Tsekenis S A, Tait N, McCann H 2015 Rev. Sci. Instrum. 86 035104Google Scholar

    [34]

    Terzija N, Karagiannopoulos S, Begg S, Wright P, Ozanyan K, McCann H 2015 Int. J. Engine Res. 16 565Google Scholar

    [35]

    Liu C, Cao Z, Lin Y, Xu L, McCann H 2018 IEEE Trans Instrum. Meas. 67 1338Google Scholar

    [36]

    Wang Z, Deguchi Y, Kamimoto T, Tainaka K, Tanno K 2020 Fuel 268 117370Google Scholar

    [37]

    陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标 2022 71 114203Google Scholar

    Tao M M, Wang Y M, Wu H L, Li G H, Wang S, Tao B, Ye J F, Feng G B, Ye X S, Chen W B 2022 Acta Phys. Sin. 71 114203Google Scholar

    [38]

    Schulze G, Jirasek A, Yu M M L, Lim A, Turner R F B, Blades M W 2005 Appl. Spectrosc. 59 545Google Scholar

  • [1] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法.  , 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [2] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [3] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量.  , 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [4] 曲灵丰, 侯清玉, 赵春旺. Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [5] 谭晓明, 赵刚, 张迪. BaCrSi4O10与AgGaSe2:Cr2+吸收光谱的精细结构及自旋单态对零场分裂参量的影响.  , 2016, 65(10): 107501. doi: 10.7498/aps.65.107501
    [6] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 高进云, 张庆礼, 王小飞, 刘文鹏, 孙贵华, 孙敦陆, 殷绍唐. Nd3+掺杂GdTaO4的吸收光谱分析和晶场计算.  , 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [9] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [10] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [11] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [12] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [13] 高进云, 孙敦陆, 罗建乔, 李秀丽, 刘文鹏, 张庆礼, 殷绍唐. 高浓度Er3+掺杂Y3Sc2Ga3O12晶体的吸收光谱与晶体场模型研究.  , 2014, 63(14): 144205. doi: 10.7498/aps.63.144205
    [14] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [15] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [16] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析.  , 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [17] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究.  , 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [18] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究.  , 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [19] 黄 丹, 邵元智, 陈弟虎, 郭 进, 黎光旭. 纤锌矿结构Zn1-xMgxO电子结构及吸收光谱的第一性原理研究.  , 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [20] 王 策, 陈晓波, 张春林, 张蕴芝, 陈 鸾, 马 辉, 李 崧, 高爱华. Er3+:GdVO4中Er3+离子的光谱参数计算和晶场中能级分裂的讨论.  , 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
计量
  • 文章访问数:  2517
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-08
  • 修回日期:  2023-07-31
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回
Baidu
map