搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子碰撞硼原子非辐射的电荷转移过程

朱宇豪 袁翔 吴勇 王建国

引用本文:
Citation:

质子碰撞硼原子非辐射的电荷转移过程

朱宇豪, 袁翔, 吴勇, 王建国

Non-radiative charge transfer process of proton impcating B atom

Zhu Yu-Hao, Yuan Xiang, Wu Yong, Wang Jian-Guo
PDF
HTML
导出引用
  • 重粒子碰撞中的电子转移涉及复杂的电子关联机制, 极大地影响等离子体中电荷态平衡, 也是X射线的辐射的重要来源之一. 电子转移截面与速率系数是国防工业发展核聚变等离子体所需要的重要原子参数. 基于全量子的非辐射分子轨道密耦合方法, 系统研究了质子碰撞硼原子在${10}^{-3}—{10}^{3}\;{\rm{e}}{\rm{V}}/{\rm{u}}$能量区间内的硼原子电子转移过程. 计算采用多参考组态方法得到总共15个电子转移、激发以及弹性散射的通道, 每个通道对应的分子态能量得到了与实验符合较好的结果. 分子态的绝热势能曲线间的避免交叉现象明显, 构成了电子转移的主要途径. 计算发现, 质子碰撞硼原子过程中2s轨道的电子转移是占主导地位, 2p轨道的电子转移贡献较小. 在低能区, 电子转移截面出现了明显的量子共振现象, 这些共振主要来源于不同能量通道的耦合. 此外, 还计算了不同温度下的质子碰撞硼原子的电子转移速率, 该速率可为复杂等离子体环境的模拟诊断提供重要的原子参数支持.
    Electron transfer in heavy particle collisions, involving complicated electron correlation mechanisms, greatly affects the charge state balance in plasma, and is also one of important sources for X-ray radiation. Electron transfer cross section and rate coefficient are important atomic parameters required for the development of nuclear fusion plasma in the national defense industry. We systematically investigate the electron transfer process of proton impacting boron atom in an energy range of ${10}^{-3}-{10}^{3}\;{\rm{e}}{\rm{V}}/{\rm{u}}$ based on a fully quantum non-radiative molecular orbital close-coupling method. A total of 15 channels of electron transfer, excitation, and elastic scattering are obtained by using the multi-reference configuration interaction method, and the corresponding molecular energy of each channel is in good agreement with the experimental results. The phenomenon of avoiding crossing between the adiabatic potential energy curves of molecular states is obvious, which constituents the main pathway of electron transfer. The calculation shows that the electron transfer of the 2s orbital is dominated in the process of proton impacting boron atom, while the electron transfer of the 2p orbital contributes a little. In the low energy region, there are obvious quantum resonances in the electron transfer cross section, which originate from the coupling between high energy channel and low energy channel. In addition, we calculate the electron transfer rates of proton-impact boron atom at different temperatures, which can provide important atomic parameter which support for simulating and diagnosing complex plasma environments.
      通信作者: 袁翔, yuanxiang@hotmail.com
    • 基金项目: 国家自然科学基金 (批准号: 11934004)资助的课题.
      Corresponding author: Yuan Xiang, yuanxiang@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11934004).
    [1]

    Janev R K, Presnyakov L P, Shevelko V P 1985 Physics of Highly Charged Ions (Berlin-Heidelberg: Springer) pp1–6

    [2]

    Loarte A, Lipschultz B, Kukushkin A S 2007 Nucl. Fusion 47 S203Google Scholar

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [4]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences) (in Chinese)

    [5]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [6]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [7]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [8]

    Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2018 Phys. Rev. A 97 052709Google Scholar

    [9]

    Zhang Y W, Gao J G, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102 022814Google Scholar

    [10]

    Liu C H, Wang J G, Janev R K 2012 Phys. Rev. A 85 042719Google Scholar

    [11]

    Yan L L, Wu Y, Qu Y Z, Wang J G, Buenker R J 2013 Phys. Rev. A 88 022706Google Scholar

    [12]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [13]

    Liu C H, Wang J G 2013 Phys. Rev. A 87 042709Google Scholar

    [14]

    Liu C H, Wang J G, Janev R K 2014 Phys. Rev. A 89 062719Google Scholar

    [15]

    Bruhns H, Kreckel H, Savin D W, seely D G, Havener C C 2008 Phys. Rev. A 77 064702Google Scholar

    [16]

    Kim H J, Phaneuf R A, Meyer F W, Stelson P H 1987 Phys. Rev. A 17 854

    [17]

    Gieler M, Ziegelwanger P, Aumayr F, Winter H, Fritsch W 1991 J. Phys. B 24 647Google Scholar

    [18]

    Ebel F, Salzborn E 1987 J. Phys. B 20 4531Google Scholar

    [19]

    Hayakawa S, Kadomura K, Kimura M, Dutta C M 2004 Phys. Rev. A 70 022708Google Scholar

    [20]

    Hayakawa H, Helm H, Briggs J S, Salzborn E 2007 Phys. Rev. Lett 99 173202Google Scholar

    [21]

    Kim H K, Schoffler M S, Houamer S, Chuluunbaatar O, Titze J N, Schmidt L P H, Jahnke T, Schmidt-Bocking H, Galstyan A, Popov Y V, Dorner R 2012 Phys. Rev. A 85 022707Google Scholar

    [22]

    Bayfield J E, Khayrallah G A 1975 Phys. Rev. A 11 920Google Scholar

    [23]

    Buenker R J, Liebermann H P, Whitten J L 2001 Chem. Phys. 265 1Google Scholar

    [24]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [25]

    Alcheev P G, Buenker R J, Chernov V, Zon B A 2003 J. Mol. Spectrosc. 218 190Google Scholar

  • 图 1  (a) BH+分子$ {\Sigma } $态势能曲线; (b) BH+分子$ {\Pi } $态势能曲线

    Fig. 1.  (a) Energy curve of BH+ molecule with $ \Sigma $ states; (b) energy curve of BH+ molecule with $ {\Pi } $ states.

    图 2  质子碰撞B原子过程中2p轨道电子转移截面

    Fig. 2.  Electron transfer cross section of 2p orbitals in the process of protons colliding with B atom.

    图 3  质子碰撞B原子过程中2s和2p轨道电子转移截面

    Fig. 3.  Electron transfer cross section of 2s and 2p orbitals in the process of protons colliding with B atom.

    图 4  径向耦合矩阵元随核间距的变化

    Fig. 4.  Radial coupling matrix element changes with the nuclear distance.

    图 5  转动耦合矩阵元随核间距的变化

    Fig. 5.  Rotation coupling matrix element varies with the nuclear distance.

    表 1  不同分子态对应的解离极限下的原子态以及态能量的理论结果和实验结果

    Table 1.  Atomic states corresponding to different molecular states under dissociation limit, and the theoretical and experimental results of state energy.

    原子态分子态能量/eV
    理论实验误差
    $ {{\rm{B}}}^{+}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}\right)+{\rm{H}}\left(1{\rm{s}}\right) $$ 1{}_{}{}^{2}{{{\Sigma }}}^{+} $000
    $ {{\rm{B}}}^{+}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{}2{\rm{p}}\right)+{\rm{H}}\left(1{\rm{s}}\right) $$ 2{}_{}{}^{2}{{{\Sigma }}}^{+}1{}_{}{}^{2}{{\Pi }} $4.62264.62300.0004
    $ {{\rm{B}}}^{}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}2{\rm{p}}\right)+{{\rm{H}}}^{+} $$ 3{}_{}{}^{2}{{{\Sigma }}}^{+}2{}_{}{}^{2}{{\Pi }} $5.30425.30030.0039
    $ {{\rm{B}}}^{+}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{}2{\rm{p}}\right)+{\rm{H}}\left(1{\rm{s}}\right) $$ 4{}_{}{}^{2}{{{\Sigma }}}^{+}3{}_{}{}^{2}{{\Pi }} $9.06639.10010.0338
    $ {{\rm{B}}}^{+}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}\right)+{\rm{H}}\left(2{\rm{p}}\right) $$ 5{}_{}{}^{2}{{{\Sigma }}}^{+}4{}_{}{}^{2}{{\Pi }} $10.176910.19870.0218
    $ {{\rm{B}}}^{+}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}\right)+{\rm{H}}\left(2{\rm{s}}\right) $$ 6{}_{}{}^{2}{{{\Sigma }}}^{+} $10.192910.19870.0058
    $ {{\rm{B}}}^{}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}3{\rm{s}}\right)+{{\rm{H}}}^{+} $$ 7{}_{}{}^{2}{{{\Sigma }}}^{+} $10.261510.25970.0018
    $ {{\rm{B}}}^{}\left(1{{\rm{s}}}^{2}2{\rm{s}}2{{\rm{p}}}^{2}\right)+{{\rm{H}}}^{+} $$ 8{}_{}{}^{2}{{{\Sigma }}}^{+}5{}_{}{}^{2}{{\Pi }} $11.249111.23370.0154
    $ {{\rm{B}}}^{}\left(1{{\rm{s}}}^{2}2{{\rm{s}}}^{2}3{\rm{s}}\right)+{{\rm{H}}}^{+} $$ 9{}_{}{}^{2}{{{\Sigma }}}^{+}6{}_{}{}^{2}{{\Pi }} $11.362311.32730.0350
    下载: 导出CSV

    表 2  电子转移总的速率系数, 其中包含2s和2p轨道的电子转移

    Table 2.  Total rate coefficient of electron transfer, including electron transfer of 2s and 2p orbitals.

    $ T/{\rm{K}} $$ 2 $$ 5 $$ 10 $$ 40 $
    $\alpha /\left({10}^{-12}~{ {\rm{c} }{\rm{m} } }^{3}{\cdot{\rm{s} } }^{-1}\right)$$ 1.72\times {10}^{-8} $$ 5.09\times {10}^{-4} $$ 1.40\times {10}^{-2} $$ 1.24\times {10}^{-1} $
    $ T/{\rm{K}} $$ 100 $$ 500 $$ 1000 $$ 6000 $
    $\alpha /\left({10}^{-14}~{ {\rm{c} }{\rm{m} } }^{3}{\cdot{\rm{s} } }^{-1}\right)$$ 14.7 $$ 10.3 $$ 8.62 $$ 46.9 $
    $T/{(10}^{5}~{\rm{K} })$$ 0.1 $$ 0.5 $$ 1.0 $$ 5.0 $
    $\alpha /\left({10}^{-12}~{ {\rm{c} }{\rm{m} } }^{3}{\cdot{\rm{s} } }^{-1}\right)$$ 1.72 $$ 8.91\times {10}^{1} $$ 3.86\times {10}^{2} $$ 4.74\times {10}^{3} $
    $T/{(10}^{6}~{\rm{K} })$$ 1.0 $$ 5.0 $$ 10 $$ 50 $
    $\alpha /\left({10}^{-9}~{ {\rm{c} }{\rm{m} } }^{3}{\cdot{\rm{s} } }^{-1}\right)$$ 9.38 $$ 25.8 $$ 26.8 $$ 7.19 $
    下载: 导出CSV
    Baidu
  • [1]

    Janev R K, Presnyakov L P, Shevelko V P 1985 Physics of Highly Charged Ions (Berlin-Heidelberg: Springer) pp1–6

    [2]

    Loarte A, Lipschultz B, Kukushkin A S 2007 Nucl. Fusion 47 S203Google Scholar

    [3]

    Kallman T R, Palmeri P 2007 Rev. Mod. Phys. 79 79Google Scholar

    [4]

    刘春华 2009 博士学位论文 (北京: 中国科学院大学)

    Liu C H 2009 Ph. D. Dissertation (Beijing: University of the Chinese Academy of Sciences) (in Chinese)

    [5]

    林晓贺 2019 博士学位论文 (北京: 北京理工大学)

    Lin X H 2019 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [6]

    Liu L, Liu C H, Wang J G, Janev R K 2011 Phys. Rev. A 84 032710Google Scholar

    [7]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96 052703Google Scholar

    [8]

    Gao J W, Wu Y, Wang J G, Sisourat N, Dubois A 2018 Phys. Rev. A 97 052709Google Scholar

    [9]

    Zhang Y W, Gao J G, Wu Y, Zhou F Y, Wang J G, Sisourat N, Dubois A 2020 Phys. Rev. A 102 022814Google Scholar

    [10]

    Liu C H, Wang J G, Janev R K 2012 Phys. Rev. A 85 042719Google Scholar

    [11]

    Yan L L, Wu Y, Qu Y Z, Wang J G, Buenker R J 2013 Phys. Rev. A 88 022706Google Scholar

    [12]

    Liu C H, Liu L, Wang J G 2014 Phys. Rev. A 90 012708Google Scholar

    [13]

    Liu C H, Wang J G 2013 Phys. Rev. A 87 042709Google Scholar

    [14]

    Liu C H, Wang J G, Janev R K 2014 Phys. Rev. A 89 062719Google Scholar

    [15]

    Bruhns H, Kreckel H, Savin D W, seely D G, Havener C C 2008 Phys. Rev. A 77 064702Google Scholar

    [16]

    Kim H J, Phaneuf R A, Meyer F W, Stelson P H 1987 Phys. Rev. A 17 854

    [17]

    Gieler M, Ziegelwanger P, Aumayr F, Winter H, Fritsch W 1991 J. Phys. B 24 647Google Scholar

    [18]

    Ebel F, Salzborn E 1987 J. Phys. B 20 4531Google Scholar

    [19]

    Hayakawa S, Kadomura K, Kimura M, Dutta C M 2004 Phys. Rev. A 70 022708Google Scholar

    [20]

    Hayakawa H, Helm H, Briggs J S, Salzborn E 2007 Phys. Rev. Lett 99 173202Google Scholar

    [21]

    Kim H K, Schoffler M S, Houamer S, Chuluunbaatar O, Titze J N, Schmidt L P H, Jahnke T, Schmidt-Bocking H, Galstyan A, Popov Y V, Dorner R 2012 Phys. Rev. A 85 022707Google Scholar

    [22]

    Bayfield J E, Khayrallah G A 1975 Phys. Rev. A 11 920Google Scholar

    [23]

    Buenker R J, Liebermann H P, Whitten J L 2001 Chem. Phys. 265 1Google Scholar

    [24]

    Buenker R J, Liebermann H P, Izgorodina E I 2003 Chem. Phys. 291 115Google Scholar

    [25]

    Alcheev P G, Buenker R J, Chernov V, Zon B A 2003 J. Mol. Spectrosc. 218 190Google Scholar

  • [1] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究.  , 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [2] 张树东, 王传航, 唐伟, 孙阳, 孙宁泽, 孙召玉, 徐慧. TiAl电子态结构的ab initio计算.  , 2019, 68(24): 243101. doi: 10.7498/aps.68.20191341
    [3] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究.  , 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [4] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算.  , 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [5] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质.  , 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [6] 韩小萱, 赵建明, 李昌勇, 贾锁堂. 长程铯里德堡分子的势能曲线.  , 2015, 64(13): 133202. doi: 10.7498/aps.64.133202
    [7] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质.  , 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [8] 李瑞, 张晓美, 李奇楠, 罗旺, 金明星, 徐海峰, 闫冰. SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究.  , 2014, 63(11): 113102. doi: 10.7498/aps.63.113102
    [9] 韩晓琴, 肖夏杰, 刘玉芳. HNO(1A’)自由基的从头算势能曲线.  , 2013, 62(19): 193101. doi: 10.7498/aps.62.193101
    [10] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [11] 郭雨薇, 张晓美, 刘彦磊, 刘玉芳. BP+基态和激发态的势能曲线和光谱性质的研究.  , 2013, 62(19): 193301. doi: 10.7498/aps.62.193301
    [12] 高雪艳, 尤凯, 张晓美, 刘彦磊, 刘玉芳. 多参考组态相互作用方法研究BS+离子的势能曲线和光谱性质.  , 2013, 62(23): 233302. doi: 10.7498/aps.62.233302
    [13] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. PS自由基X2Π态的势能曲线和光谱性质.  , 2013, 62(20): 203104. doi: 10.7498/aps.62.203104
    [14] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级.  , 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [15] 于坤, 张晓美, 刘玉芳. 从头计算研究BCl+基态和激发态的势能曲线和光谱性质.  , 2013, 62(6): 063301. doi: 10.7498/aps.62.063301
    [16] 丁丁, 何斌, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞电离微分截面及电离机理研究.  , 2013, 62(3): 033401. doi: 10.7498/aps.62.033401
    [17] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [18] 刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元. 调制光/电作用下染料敏化太阳电池中电荷传输和界面转移研究.  , 2010, 59(7): 5141-5147. doi: 10.7498/aps.59.5141
    [19] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [20] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数.  , 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
计量
  • 文章访问数:  2961
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-27
  • 修回日期:  2023-06-03
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回
Baidu
map