搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蛋壳膜电解质栅控氧化物神经形态晶体管

李岩 陈鑫力 王伟胜 石智文 竺立强

引用本文:
Citation:

蛋壳膜电解质栅控氧化物神经形态晶体管

李岩, 陈鑫力, 王伟胜, 石智文, 竺立强

Egg shell membrane based electrolyte gated oxide neuromorphic transistor

Li Yan, Chen Xin-Li, Wang Wei-Sheng, Shi Zhi-Wen, Zhu Li-Qiang
PDF
HTML
导出引用
  • 近年来, 神经形态器件的研究受到了人们的广泛关注, 正在成为人工智能技术发展的重要分支. 与此同时, 天然生物材料具有可降解性、良好的生物相容性、无毒性等多种优势, 在新型便携式智能系统中有重要应用价值. 本文采用蛋壳膜(ESM)作为电解质, 具有极高的室温质子电导率(~6.4×10–3 S/cm)和极高的室温双电层电容(~2.8 µF/cm2), 因此其具有极强的界面双电层静电调控能力. 以此为基础, 研制了氧化铟锡双电层晶体管, 器件具有优异的电学特性. 基于ESM独特的界面双电层调控特性, 在器件上实现了一些重要仿生突触塑性行为, 如兴奋性突触后电流、双脉冲易化和突触滤波. 通过施加突触刺激, 实现了器件的多重突触权重更新. 在此基础上采用人工神经网络实现了手写数字的模式识别, 最佳识别精度约高达92.59%. 因此, 提出的ESM栅控氧化物神经形态晶体管在低成本生物可降解神经形态系统中有一定的应用潜力.
    In recent years, the study of neuromorphic devices has received extensive attention. It is becoming an important branch of the development of artificial intelligence technology. At the same time, natural biomaterials have several priorities, such as biodegradability, good biocompatibility, and non-toxicity, and have important value in novel portable intelligent systems. The egg shell membrane (ESM) is a fiber scaffold composed of highly crosslinked collagen, glycoprotein and cysteine-rich eggshell membrane proteins. It has porous morphology, thermal stability, mechanical strength, etc. Therefore, these protein-based fiber membranes have several potential applications, including nanocatalysts, microbial fuel cells, and adsorption of toxic dyes. This study adopts ESM as electrolyte, exhibiting extremely high proton conductivity of about 6.4×10–3 S/cm and extremely high electric-double-layer (EDL) capacitance of about 2.8 µF/cm2 at room temperature. Thus, it has extremely strong interfacial EDL electrostatic modulation capability. Then, indium tin oxide EDL transistor is fabricated by using a single step masking processing and magnetron sputtering deposition technology. The device exhibits typical n-type output curves and transfer curves at low operating voltage. In addition, transfer curves are scanned twice. It is observed that the curves approach to each other quite well, indicating the good stabilities. Owing to the extremely strong proton gating effects, the device exhibits excellent electrical performances. Specifically, ON/OFF ratio, mobility and sub-threshold swing are estimated to be about 2.5×106, about 3.2 cm2/(V·s), and about 213 mV/dec, respectively. With the unique interfacial EDL modulation activities of ESM, the transistor can mimic some important synaptic plasticity behaviors, such as excitatory postsynaptic current (EPSC) and paired pulse facilitation (PPF). With the increase of pre-synaptic spike amplitude, the EPSC value increases correspondingly. With the increase of pre-synaptic spike frequency, the EPSC grain increases, indicating the potentials in high-pass synaptic filtering. By loading 64 potentiation spikes and 64 depression spikes, multi-level synaptic weight can be updated, demonstrating potentiation activity and depression activity. Again, with the same potentiation spikes and depression spikes, synaptic weight value curves approach to each other quite well, indicating that the present ESM gated oxide neuromorphic transistor has good stability. Then, an artificial neural network is adopted to perform supervised learning with Modified National Institute of Standards and Technology (MNIST) database. For simulation, a two-layer multilayer perceptron (MLP) neural network with 400 input neurons, 100 hidden neurons and 10 output neurons is adopted. The best recognition accuracy is as high as 92.59%. The proposed ESM gated oxide neuromorphic transistors have certain potentials in low-cost biodegradable neuromorphic systems.
      通信作者: 竺立强, zhuliqiang@nbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51972316, U22A2075)和宁波市重大科技攻关项目(批准号: 2021Z116) 资助的课题.
      Corresponding author: Zhu Li-Qiang, zhuliqiang@nbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972316, U22A2075) and the Ningbo Key Scientific and Technological Project, China (Grant No. 2021Z116).
    [1]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [2]

    Poo M M, Du J L, Ip N Y, Xiong Z Q, Xu B, Tan T 2016 Neuron 92 591Google Scholar

    [3]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cognit. Archit. 19 49

    [4]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [5]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [6]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [7]

    Chen J B, Guo T T, Yang C Y, Xu J W, Gao L Y, Jia S J, Zhang P, Chen J T, Zhao Y, Wang J, Zhang X Q, Li Y 2023 J. Phys. Chem. C 127 3307Google Scholar

    [8]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [9]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [10]

    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W 2020 Adv. Mater. 32 1906899Google Scholar

    [11]

    Shao F, Feng P, Wan C J, Wan X, Yang Y, Shi Y, Wan Q 2017 Adv. Electron. Mater. 3 1600509Google Scholar

    [12]

    He Y L, Nie S, Liu R, Jiang S S, Shi Y, Wan Q 2019 Adv. Mater. 31 1900903Google Scholar

    [13]

    Feng G D, Jiang J, Li Y R, Xie D D, Tian B B, Wan Q 2021 Adv. Funct. Mater. 31 2104327Google Scholar

    [14]

    Guo Y B, Zhu L Q, Long T Y, Yun D, Ren Z Y 2020 J. Mater. Chem. C 8 2780Google Scholar

    [15]

    Fu Y M, Wan C J, Zhu L Q, Xiao H, Chen X D, Wan Q 2018 Adv. Biosyst. 2 1700198Google Scholar

    [16]

    Wang X J, Zhu L, Chen C S, Mao H W, Zhu Y X, Zhu Y, Yang Y, Wan C J, Wan Q 2021 Flexible. Printed Electron. 6 044008Google Scholar

    [17]

    Feng G D, Jiang J, Zhao Y H, Wang S T, Liu B, Yin K, Niu D M, Li X H, Chen Y Q, Duan H G 2020 Adv. Mater. 32 1906171Google Scholar

    [18]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [19]

    Li L K, Wang X L, Pei J X, Liu W J, Wu X H, Zhang D W, Ding S J 2021 Sci. China Mater. 64 1219Google Scholar

    [20]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [21]

    Qiu W J, Sun J, Liu W R, Huang Y L, Chen Y, Yang J L, Gao Y L 2020 Org. Electron. 84 105810Google Scholar

    [22]

    Ding G L, Yang B D, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y B, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [23]

    Li Y, Zhang C, Zhao X L, Tong Y H, Tang Q X, Liu Y C 2022 ACS Appl. Electron. Mater. 4 316Google Scholar

    [24]

    Raeis-Hosseini N, Park Y, Lee J S 2018 Adv. Funct Mater. 28 1800553Google Scholar

    [25]

    Guo L Q, Tao J, Zhu L Q, Xiao H, Gao W T, Yu F, Fu Y M 2018 Org. Electron. 61 312Google Scholar

    [26]

    He Y L, Nie S, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 139Google Scholar

    [27]

    Cai J C, Ren Z Y, Zhu L Q, Dai Y J, Zeng Y H, Guo W, Xiao H, Ye J C 2021 J. Phys. D-Appl. Phys. 54 375102Google Scholar

    [28]

    Wen J, Zhu L Q, Qi H F, Ren Z Y, Wang F, Xiao H 2020 Org. Electron. 82 105782Google Scholar

    [29]

    Jiang S H, Feng P, Yang Y, Du P F, Shi Y, Wan Q 2016 IEEE Electron Device Lett. 37 287Google Scholar

    [30]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [31]

    Weymuth T, Jacob C R, Reiher M 2010 J. Phys. Chem. B 114 10649Google Scholar

    [32]

    Bandekar J 1992 Biochim. Biophys. Acta 1120 123Google Scholar

    [33]

    Dong Q, Su H L, Zhang D, Cao W, Wang N 2007 Langmuir 23 8108Google Scholar

    [34]

    Kong J, Yu S 2007 Acta Bioch. Bioph. Sin. 39 549Google Scholar

    [35]

    Arami M, Limaee N Y, Mahmoodi N M 2006 Chemosphere 65 1999Google Scholar

    [36]

    Fu Y M, Zhu L Q, Wen J, Xiao H, Liu R 2017 J. Appl. Phys. 121 205301Google Scholar

    [37]

    Mukhamedyarov M A, Grishin S N, Zefirov A L, Palotas A 2009 Pflugers Arch. -Eur. J. Physiol 458 563Google Scholar

    [38]

    Chen P Y, Peng X C, Yu S M 2018 IEEE Trans. Comput. -Aided Design Integr. Circuits Syst. 37 3067Google Scholar

    [39]

    Wang W S, Ren Z Y, Shi Z W, Xiao H, Zeng Y H, Zhu L Q 2022 IEEE Electron Device Lett. 43 737Google Scholar

  • 图 1  (a) ESM电解质膜栅控ITO神经形态晶体管的制备流程示意图, 插图是器件的照片; (b) 鸡蛋壳内ESM内外双层分层情况照片; (c) ESM内膜内表面的SEM显微形貌照片; (d) ESM内膜外表面的SEM显微形貌照片; (e) ESM膜的截面SEM照片; (f) ESM膜的傅里叶变换红外光谱(FTIR)

    Fig. 1.  (a) Device processing of ESM electrolyte gated ITO neuromoprhic transistor; Inset: photograph of device; (b) photograph of ESM double layer in egg shell; (c) SEM morphology image of ESM inner membrane inner surface; (d) SEM morphology image of ESM inner membrane outer surface; (e) SEM cross sectional image of ESM inner membrane; (f) Fourier transform infrared spectroscopy of ESM.

    图 2  (a) ESM膜电解质的单位面积电容与频率关系曲线, 插图为ITO/ESM/ITO三明治电容结构示意图; (b) ESM膜电解质的阻抗频谱数据, 插图为ESM膜的漏电特性

    Fig. 2.  (a) Frequency-dependent capacitance of ESM based electrolyte; Inset: schematic diagram of ITO/ESM/ITO sandwiched testing structure; (b) impedance spectroscopy data of ESM; Inset: leakage current.

    图 3  ESM栅控ITO神经形态晶体管的(a)输出特性曲线和(b)转移特性曲线. 图(b)中黑线为第一次扫描, 红线为第二次扫描

    Fig. 3.  Electrical performances of ESM gated ITO neuromorphic transistor: (a) Output characteristic curves; (b) transfer characteristic curves (black symbol, the first scan; red symbol, the second scan).

    图 4  (a) 生物突触结构(左)及ITO神经形态晶体管(右)示意图; (b) 典型的EPSC响应, 读取电压Vds = 0.5 V, 前突触刺激为(1 V, 10 ms); (c) 两个前突触刺激下的EPSC响应, 前突触刺激为(1 V, 10 ms), 间隔时间∆t = 20 ms; (d) η随Δt的变化关系

    Fig. 4.  (a) Schematic diagram of a synapse (left) and ITO neuromorphic transistor (right); (b) typical EPSC response triggered with a presynaptic spike (1 V, 10 ms), Vds = 0.5 V; (c) EPSC response triggered with paired presynaptic spikes (1 V, 10 ms), interval time Δt = 20 ms; (d) η as a function of Δt value.

    图 5  (a) 不同刺激强度下的EPSC相应; (b) 不同频率刺激序列下的EPSC响应; (c) 高通滤波功能示意图; (d) EPSC幅值增益与刺激频率的关系.

    Fig. 5.  (a) EPSC responses under different presynaptic spike amplitude; (b) EPSC responses under spike trains with different frequency; (c) schematic diagram of high-pass filtering; (d) EPSC grain as a function of spike frequency.

    图 6  (a) 施加在ITO神经形态晶体管上的刺激信号示意图; (b), (c) 不同增强脉冲和抑制脉冲刺激下的权重更新结果; (d) 两层MLP模拟器的示意图, 由400个输入神经元、100个隐藏神经元和10个输出神经元组成; (e) MNIST识别精度

    Fig. 6.  (a) Schematic diagram of spike loaded on ITO neuromorphic transistor; (b) and (c) synaptic weight updating obtained under different potentiation/depression spikes; (d) schematic diagram of two-layer MLP simulator, consisting of 400 input neurons, 100 hidden neurons and 10 output neurons; (e) recognition accuracies for MNIST patterns.

    Baidu
  • [1]

    Abbott L F, Regehr W G 2004 Nature 431 796Google Scholar

    [2]

    Poo M M, Du J L, Ip N Y, Xiong Z Q, Xu B, Tan T 2016 Neuron 92 591Google Scholar

    [3]

    James C D, Aimone J B, Miner N E, Vineyard C M, Rothganger F H, Carlson K D, Mulder S A, Draelos T J, Faust A, Marinella M J, Naegle J H, Plimpton S J 2017 Biol. Inspired Cognit. Archit. 19 49

    [4]

    Zidan M A, Strachan J P, Lu W D 2018 Nat. Electron. 1 22Google Scholar

    [5]

    Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P, Lu W 2010 Nano Lett. 10 1297Google Scholar

    [6]

    Kim M K, Lee J S 2018 ACS Nano 12 1680Google Scholar

    [7]

    Chen J B, Guo T T, Yang C Y, Xu J W, Gao L Y, Jia S J, Zhang P, Chen J T, Zhao Y, Wang J, Zhang X Q, Li Y 2023 J. Phys. Chem. C 127 3307Google Scholar

    [8]

    Zhu L Q, Wan C J, Guo L Q, Shi Y, Wan Q 2014 Nat. Commun. 5 3158Google Scholar

    [9]

    Ge C, Liu C X, Zhou Q L, Zhang Q H, Du J Y, Li J K, Wang C, Gu L, Yang G Z, Jin K J 2019 Adv. Mater. 31 1900379Google Scholar

    [10]

    Park H L, Kim H, Lim D, Zhou H, Kim Y H, Lee Y, Park S, Lee T W 2020 Adv. Mater. 32 1906899Google Scholar

    [11]

    Shao F, Feng P, Wan C J, Wan X, Yang Y, Shi Y, Wan Q 2017 Adv. Electron. Mater. 3 1600509Google Scholar

    [12]

    He Y L, Nie S, Liu R, Jiang S S, Shi Y, Wan Q 2019 Adv. Mater. 31 1900903Google Scholar

    [13]

    Feng G D, Jiang J, Li Y R, Xie D D, Tian B B, Wan Q 2021 Adv. Funct. Mater. 31 2104327Google Scholar

    [14]

    Guo Y B, Zhu L Q, Long T Y, Yun D, Ren Z Y 2020 J. Mater. Chem. C 8 2780Google Scholar

    [15]

    Fu Y M, Wan C J, Zhu L Q, Xiao H, Chen X D, Wan Q 2018 Adv. Biosyst. 2 1700198Google Scholar

    [16]

    Wang X J, Zhu L, Chen C S, Mao H W, Zhu Y X, Zhu Y, Yang Y, Wan C J, Wan Q 2021 Flexible. Printed Electron. 6 044008Google Scholar

    [17]

    Feng G D, Jiang J, Zhao Y H, Wang S T, Liu B, Yin K, Niu D M, Li X H, Chen Y Q, Duan H G 2020 Adv. Mater. 32 1906171Google Scholar

    [18]

    Zhong G K, Zi M F, Ren C L, Xiao Q, Tang M K, Wei L Y, An F, Xie S H, Wang J B, Zhong X L, Huang M Q, Li J Y 2020 Appl. Phys. Lett. 117 092903Google Scholar

    [19]

    Li L K, Wang X L, Pei J X, Liu W J, Wu X H, Zhang D W, Ding S J 2021 Sci. China Mater. 64 1219Google Scholar

    [20]

    Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar

    [21]

    Qiu W J, Sun J, Liu W R, Huang Y L, Chen Y, Yang J L, Gao Y L 2020 Org. Electron. 84 105810Google Scholar

    [22]

    Ding G L, Yang B D, Chen R S, Mo W A, Zhou K, Liu Y, Shang G, Zhai Y B, Han S T, Zhou Y 2021 Small 17 2103175Google Scholar

    [23]

    Li Y, Zhang C, Zhao X L, Tong Y H, Tang Q X, Liu Y C 2022 ACS Appl. Electron. Mater. 4 316Google Scholar

    [24]

    Raeis-Hosseini N, Park Y, Lee J S 2018 Adv. Funct Mater. 28 1800553Google Scholar

    [25]

    Guo L Q, Tao J, Zhu L Q, Xiao H, Gao W T, Yu F, Fu Y M 2018 Org. Electron. 61 312Google Scholar

    [26]

    He Y L, Nie S, Liu R, Shi Y, Wan Q 2019 IEEE Electron Device Lett. 40 139Google Scholar

    [27]

    Cai J C, Ren Z Y, Zhu L Q, Dai Y J, Zeng Y H, Guo W, Xiao H, Ye J C 2021 J. Phys. D-Appl. Phys. 54 375102Google Scholar

    [28]

    Wen J, Zhu L Q, Qi H F, Ren Z Y, Wang F, Xiao H 2020 Org. Electron. 82 105782Google Scholar

    [29]

    Jiang S H, Feng P, Yang Y, Du P F, Shi Y, Wan Q 2016 IEEE Electron Device Lett. 37 287Google Scholar

    [30]

    Li Z Y, Zhu L Q, Guo L Q, Ren Z Y, Xiao H, Cai J C 2021 ACS Appl. Mater. Interfaces 13 7784Google Scholar

    [31]

    Weymuth T, Jacob C R, Reiher M 2010 J. Phys. Chem. B 114 10649Google Scholar

    [32]

    Bandekar J 1992 Biochim. Biophys. Acta 1120 123Google Scholar

    [33]

    Dong Q, Su H L, Zhang D, Cao W, Wang N 2007 Langmuir 23 8108Google Scholar

    [34]

    Kong J, Yu S 2007 Acta Bioch. Bioph. Sin. 39 549Google Scholar

    [35]

    Arami M, Limaee N Y, Mahmoodi N M 2006 Chemosphere 65 1999Google Scholar

    [36]

    Fu Y M, Zhu L Q, Wen J, Xiao H, Liu R 2017 J. Appl. Phys. 121 205301Google Scholar

    [37]

    Mukhamedyarov M A, Grishin S N, Zefirov A L, Palotas A 2009 Pflugers Arch. -Eur. J. Physiol 458 563Google Scholar

    [38]

    Chen P Y, Peng X C, Yu S M 2018 IEEE Trans. Comput. -Aided Design Integr. Circuits Syst. 37 3067Google Scholar

    [39]

    Wang W S, Ren Z Y, Shi Z W, Xiao H, Zeng Y H, Zhu L Q 2022 IEEE Electron Device Lett. 43 737Google Scholar

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变.  , 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善.  , 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [3] 赵子博, 庄革, 谢锦林, 渠承明, 强子薇. 用于等离子体相干模式自动识别的谱聚类算法实现.  , 2022, 71(15): 155202. doi: 10.7498/aps.71.20220367
    [4] 刘强, 倪尧, 刘璐, 孙林, 刘甲奇, 徐文涛. 基于层状多元金属氧化物的人造突触.  , 2022, 71(14): 148501. doi: 10.7498/aps.71.20220303
    [5] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展.  , 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [6] 李雷, 颜涵, 陈湘明. 低损耗材料微波介电性能测试中识别TE01δ模式的新方法.  , 2020, 69(12): 128401. doi: 10.7498/aps.69.20200275
    [7] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件.  , 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [8] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现.  , 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [9] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制.  , 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [10] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管.  , 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [11] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管.  , 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [12] 杨旻昱, 宋建军, 张静, 唐召唤, 张鹤鸣, 胡辉勇. 氮化硅膜致小尺寸金属氧化物半导体晶体管沟道单轴应变物理机理.  , 2015, 64(23): 238502. doi: 10.7498/aps.64.238502
    [13] 王美丽, 王俊松. 基于抑制性突触可塑性的反馈神经回路兴奋性与抑制性动态平衡.  , 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [14] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响.  , 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [15] 李凯彦, 赵兴群, 孙小菡, 万遂人. 一种用于光纤链路振动信号模式识别的规整化复合特征提取方法.  , 2015, 64(5): 054304. doi: 10.7498/aps.64.054304
    [16] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究.  , 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [17] 胡永刚, 夏风, 肖建中, 雷超, 李向东. 基于阻抗模型解析的氧化锆固体电解质组织结构演变模型.  , 2012, 61(9): 098102. doi: 10.7498/aps.61.098102
    [18] 李 彤, 商朋见. 多重分形在掌纹识别中的研究.  , 2007, 56(8): 4393-4400. doi: 10.7498/aps.56.4393
    [19] 神经网络的自适应删剪学习算法及其应用.  , 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
    [20] 李子荣, 孟庆安, 管荻华, 王 刚. PAN为基凝胶聚合物电解质自扩散系数的NMR研究.  , 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
计量
  • 文章访问数:  3164
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-17
  • 修回日期:  2023-05-24
  • 上网日期:  2023-05-29
  • 刊出日期:  2023-08-05

/

返回文章
返回
Baidu
map