搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaInP/GaAs太阳电池的柔性封装及稳定性

吴晓旭 龙军华 孙强健 王霞 陈志韬 于梦璐 罗骁龙 李雪飞 赵沪隐 陆书龙

引用本文:
Citation:

GaInP/GaAs太阳电池的柔性封装及稳定性

吴晓旭, 龙军华, 孙强健, 王霞, 陈志韬, 于梦璐, 罗骁龙, 李雪飞, 赵沪隐, 陆书龙

Study of flexible packing and stability of GaInP/GaAs solar cells

Wu Xiao-Xu, Long Jun-Hua, Sun Qiang-Jian, Wang Xia, Chen Zhi-Tao, Yu Meng-Lu, Luo Xiao-Long, Li Xue-Fei, Zhao Hu-Yin, Lu Shu-Long
cstr: 32037.14.aps.72.20230352
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 柔性Ⅲ-Ⅴ薄膜太阳电池通常被作为空间电源在航天器上使用, 而在实际应用中适宜的封装材料可以保护电池免受水分、氧化、污染物等环境因素的影响. 因此, 探究合适的柔性封装方案和电池性能的长期稳定性至关重要. 本文利用电阻焊方法将制备好的柔性双结GaInP/GaAs太阳电池进行焊接, 之后采用具有高透光性的薄膜材料和热熔胶与柔性电池进行层压封装并研究了其在恶劣储存条件下的性能稳定性和环境耐受性. 研究结果表明, 柔性封装太阳电池在1000 h以上的温度为85 ℃, 相对湿度85% (85 ℃/85% RH)的湿热试验以及108次温度范围为–60 ℃—75 ℃的冷热循环老化试验后仍然保持了很好的稳定性, 表明封装工艺对柔性太阳电池具有较好的保护作用. 此外, 基于二极管模型的电学仿真结果表明, 柔性封装后电池性能的改变是由于载流子复合增强, 从而降低了开路电压.
    Flexible III-V thin-film solar cells are usually used as space power supply in spacecrafts. In practical applications, suitable encapsulated materials can protect the cells from being affected by environmental factors such as moisture, oxidation and pollutants. Therefore, it is critical to explore suitable flexible encapsulation schemes and long-term stability of solar cell performance. In this paper, the prepared flexible GaInP/GaAs solar cells are welded by resistance welding, and then laminated with polymer encapsulation thin films and hot melt adhesives with high light transmission. After being encapsulated, the flexible two-junction solar cell achieves good electrical performance (Jsc = 13.105 mA·cm–2, Voc = 2.360 V), the photoelectric conversion efficiency can reach 24.81%, and the weight density is about 405 g/m2. The performance stability and environmental tolerance of the encapsulated flexible GaInP/GaAs solar cells under complex storage conditions are investigated. The results show that the encapsulated flexible solar cells still maintain good stability after 85 ℃/85% RH damp heat has been tested for more than 1000 h and 108 cycles of thermal cycling test between –60 ℃ and 75 ℃, respectively. It also proves that the encapsulated technology adopted in this experiment is feasible and has an excellent protective effect on the double-junction solar cells. However, there is a slight decrease in the open-circuit voltage in the long-term damp heat test (ΔVoc ≈ 0.023 V), which may reflect the change of the solar cell itself. By further extracting the changes of the ideal factors n1 and n2 representing the recombination mechanism and diffusion mechanism respectively from the dark I-V curves (Δn1 = 1.295, Δn2 = 0.087), it can be found that the slight drop of open-circuit voltage is closely related to the recombination enhancement (Δn1$\gg $Δn2). In the long-term high temperature and humidity environment, it is easy to introduce defects in the material of the solar cells, serving as the carrier recombination centers, thus accelerating the carrier recombination, reducing the parallel resistance, shortening the minority carrier lifetime, and increasing the reverse saturation current resulting in a slight drop in the open-circuit voltage. In addition, the electrical simulation results based on the diode-model indicate that the change in the performance of the solar cells after flexible encapsulation is due to the enhanced carrier recombination under damp heat test, which reduces the open-circuit voltage.
      通信作者: 龙军华, jhlong2017@sinano.ac.cn ; 陆书龙, sllu2008@sinano.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61827823, 62274176)、江苏省自然科学基金(批准号: BK20220292)、苏州市科技项目(批准号: SYC2022123)和中国科学院苏州纳米技术与纳米仿生研究所项目(批准号: Y4JAQ21005)资助的课题.
      Corresponding author: Long Jun-Hua, jhlong2017@sinano.ac.cn ; Lu Shu-Long, sllu2008@sinano.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61827823, 62274176), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20220292), the Science and Technology Program of Suzhou, China (Grant No. SYC2022123), and the Program from SINANO, China (Grant No. Y4JAQ21005).
    [1]

    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X 2022 Prog. Photovoltaics Res. Appl. 30 687Google Scholar

    [2]

    Takamoto T, Kodama T, Yamaguchi H, Agui T, Takahashi N, Washio H, Hisamatsu T, Kaneiwa M, Okamoto K, Imaizumi M, Kibe K 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p1769

    [3]

    Imaizumi M, Nakamura T, Takamoto T, Ohshima T, Tajima M 2017 Prog. Photovoltaics Res. Appl. 25 161Google Scholar

    [4]

    Imaizumi M, Takamoto T, Sugimoto H, Ohshima T, Kawakita S 2019 Proceedings of the IEEE 46th Photovoltaic Specialists Conference Chicago, IL, USA, June 16–21, 2019 p1495

    [5]

    Park S, Bourgoin J C, Sim H, Baur C, Khorenko V, Cavani O, Bourcois J, Picard S, Boizot B 2018 Prog. Photovoltaics Res. Appl. 26 778Google Scholar

    [6]

    Raya-Armenta J M, Bazmohammadi N, Vasquez J C, Guerrero J M 2021 Sol. Energy Mater. Sol. Cells 233 111379Google Scholar

    [7]

    Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato S I, Ohshima T 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, OR, USA, June 5–10, 2016 p2574

    [8]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, CO, USA, June 8–13, 2014 p1

    [9]

    Samberg J P, Zachary Carlin C, Bradshaw G K, Colter P C, Harmon J L, Allen J B, Hauser J R, Bedair S M 2013 Appl. Phys. Lett. 103 103503Google Scholar

    [10]

    Long J, Wu D, Huang X, Ye S, Li X, Ji L, Sun Q, Song M, Xing Z, Lu S 2021 Prog. Photovoltaics Res. Appl. 29 181Google Scholar

    [11]

    Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502Google Scholar

    [12]

    Schön J, Bissels G M M W, Mulder P, van Leest R H, Gruginskie N, Vlieg E, Chojniak D, Lackner D 2022 Prog. Photovoltaics Res. Appl. 30 1003Google Scholar

    [13]

    Shoji Y, Makita K, Sugaya T 2020 Jpn. J. Appl. Phys. 59 052003Google Scholar

    [14]

    Long J, Li X, Sun Q, Dai P, Zhang Y, Xuan J, Chen F, Song M, Honda S, Uchida S, Lu S 2021 Sol. RRL 5 2100066Google Scholar

    [15]

    Xuan J, Long J, Sun Q, Zhang Y, Li X, Wang X, Chen Z, Wu X, Lu S 2022 Sol. RRL 6 2200371Google Scholar

    [16]

    van Riesen S, Bett A W 2005 Prog. Photovoltaics Res. Appl. 13 369Google Scholar

    [17]

    King R R, Fetzer C M, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Kinsey G S, Cotal H L, Ermer J H, Sherif R A, Emery K, Metzger W, Ahrenkiel R K, Karam N H 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 p622

    [18]

    Kurtz S R, Olson J M, Kibbler A 1990 Appl. Phys. Lett. 57 1922Google Scholar

    [19]

    Steiner M A, France R M, Buencuerpo J, Geisz J F, Nielsen M P, Pusch A, Olavarria W J, Young M, Ekins-Daukes N J 2020 Adv. Energy. Mater. 11 2002874Google Scholar

    [20]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar

    [21]

    Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T 2013 Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems (CPV) Miyazaki, Japan, April 15–17, 2013 p22

    [22]

    Kayes B M, Zhang L, Twist R, Ding I K, Higashi G S 2014 IEEE J. Photovoltaics 4 729Google Scholar

    [23]

    张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 62 158802Google Scholar

    Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802Google Scholar

    [24]

    王笃祥, 李明阳, 毕京锋, 李森林, 刘冠洲, 宋明辉, 吴超瑜, 陈文浚 2017 发光学报 38 1217Google Scholar

    Wang D X, Li M Y, Bi J F, Li S L, Liu G Z, Song M H, Wu C Y, Chen W J 2017 Chin. J. Lumin. 38 1217Google Scholar

    [25]

    铁剑锐, 李晓东, 孙希鹏 2018 电源技术 42 1174

    Tie J R, Li X D, Sun X P 2018 Chin. J. Power Souces 42 1174

    [26]

    Kim T S, Kim H J, Geum D M, Han J H, Kim I S, Hong N, Ryu G H, Kang J, Choi W J, Yu K J 2021 ACS Appl. Mater. Interfacse 13 13248Google Scholar

    [27]

    Raj V, Haggren T, Wong W W, Tan H H, Jagadish C 2021 J. Phys. D: Appl. Phys. 55 143002Google Scholar

    [28]

    Yang J K, Jiao X Y, Yang Y, Wang X S, Song L L, Xue J, Chen Z C 2019 Proceedings of the Proceedings of the 6th China High Resolution Earth Observation Conference (CHREOC 2019) Chengdu, China, September 1, 2020 p385

    [29]

    Drees M, Stender C L, Chan R, Osowski M, Pan N 2020 Proceedings of the 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC) Virtual Meeting, June 15–August 21, 2020 p1283

    [30]

    Hong H F, Huang T S, Uen W Y, Chen Y Y 2014 J. Nanomater. 2014 1Google Scholar

    [31]

    Mekhilef S, Saidur R, Kamalisarvestani M 2012 Renewable Sustainable Energy Rev. 16 2920Google Scholar

    [32]

    Faye I, Ndiaye A, Gecke R, Blieske U, Kobor D, Camara M 2019 Sol. Energy 191 161Google Scholar

    [33]

    Khan F, Kim J H 2019 Materials (Basel) 12 4047Google Scholar

    [34]

    Orlando V, Gabás M, Galiana B, Espinet-González P, Palanco S, Nuñez N, Vázquez M, Araki K, Algora C 2017 Prog. Photovoltaics Res. Appl. 25 97Google Scholar

    [35]

    Orlando V, Lombardero I, Gabás M, Nuñez N, Vázquez M, Espinet-González P, Bautista J, Romero R, Algora C 2019 Prog. Photovoltaics Res. Appl. 28 148Google Scholar

    [36]

    Nuñez N, Vazquez M, Barrutia L, Bautista J, Lombardero I, Zamorano J C, Hinojosa M, Gabas M, Algora C 2021 Sol. Energy Mater. Sol. Cells 230 111211Google Scholar

    [37]

    Espinet-González P, Algora C, Núñez N, Orlando V, Vázquez M, Bautista J, Araki K 2015 Prog. Photovoltaics Res. Appl. 23 559Google Scholar

    [38]

    Bauhuis G J, Mulder P, Schermer J J 2014 Prog. Photovoltaics Res. Appl. 22 656Google Scholar

    [39]

    Wanlass M, Ahrenkiel P, Albin D, Carapella J, Duda A, Emery K, Friedman D, Geisz J, Jones K, Kibbler A, Kiehl J, Kurtz S, McMahon W, Moriarty T, Olson J, Ptak A, Romero M, Ward S 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p729

    [40]

    Sun Q, Long J, Li X, Dai P, Zhang Y, Xuan J, Wang X, Chen Z, Wu X, Lu S 2022 IEEE Electron Device Lett. 43 584Google Scholar

    [41]

    Long J, Xiao M, Huang X, Xing Z, Li X, Dai P, Tan M, Wu Y, Song M, Lu S 2019 J. Cryst. Growth 513 38Google Scholar

    [42]

    Chen Z, Long J, Sun Q, Wang X, Wu X, Li X, Yu M, Luo X, Zhao H, Fu Y, Lu S 2022 Adv. Energy Sustainability Res. 4 2200136Google Scholar

    [43]

    郭永刚, 李媛媛, 左燕, 卢博, 杨增英 2022 合成材料老化与应用 51 51Google Scholar

    Guo Y G, Li Y Y, Zuo Y, Lu B, Yang Z Y 2022 Synth. Mater. Aging Appl. 51 51Google Scholar

    [44]

    丁盛, 张海鹏 2021 粘接 45 32

    Ding S, Zhang H P 2021 Adhesion 45 32

    [45]

    Huang X, Long J, Wu D, et al. 2020 Sol. Energy Mater. Sol. Cells 208 110398Google Scholar

    [46]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123Google Scholar

    [47]

    岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰 2014 63 188101Google Scholar

    Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101Google Scholar

    [48]

    Braun A, Szabó N, Schwarzburg K, Hannappel T, Katz E A, Gordon J M 2011 Appl. Phys. Lett. 98 223506Google Scholar

    [49]

    van Dyk E E, Meyer E L 2004 Renewable Energy 29 333Google Scholar

    [50]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [51]

    肖文波, 刘伟庆, 吴华明, 张华明 2018 67 198801Google Scholar

    Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar

  • 图 1  柔性GaInP/GaAs薄膜太阳电池 (a) 堆叠结构示意图; (b) 工艺流程图

    Fig. 1.  Flexible GaInP/GaAs thin-film solar cells: (a) Stack structure diagram; (b) process flow diagram.

    图 2  柔性GaInP/GaAs薄膜太阳电池 (a) 封装实物图; (b) 封装结构示意图

    Fig. 2.  Flexible GaInP/GaAs thin-film solar cells: (a) Picture of real encapsulated products; (b) encapsulation structure diagram.

    图 3  (a) 未封装柔性电池EQE特性曲线; (b) 封装前后柔性GaInP/GaAs薄膜太阳电池在AM 1.5G光谱下的J-V特性曲线

    Fig. 3.  (a) EQE curves of unencapsulated flexible solar cell; (b) J-V characteristic curves of flexible GaInP/GaAs thin-film solar cells under AM 1.5G spectra before and after encapsulation.

    图 4  柔性未封装GaInP/GaAs太阳电池85 ℃/85% RH湿热试验后在AM 1.5G光谱下的J-V特性曲线, 插图为相应的电学性能测试结果

    Fig. 4.  J-V characteristic curves under the AM 1.5G spectrum of unencapsulated flexible GaInP/GaAs solar cell after damp heat test at 85 ℃ and 85% RH, the inserted tables are the absolute values of performance parameters.

    图 5  柔性封装GaInP/GaAs薄膜太阳电池 (a) 85 ℃/85% RH湿热试验; (b) –60 ℃—75 ℃冷热循环试验后在AM 1.5G光谱下的J-V特性曲线, 图中插入的表格为相应的电学性能测试结果; (c), (d) 在长期湿热和冷热循环试验下的短路电流密度(Jsc)、开路电压(Voc)、填充因子(FF)和效率(Eff)电学性能参数随老化时间的归一化变化

    Fig. 5.  J-V characteristic curves under the AM 1.5G spectra of encapsulated flexible GaInP/GaAs solar cells after: (a) Damp heat test at 85 ℃ and 85% RH; (b) thermal cycling test between –60 ℃ to 75 ℃, the inserted tables are the absolute values of performance parameters; (c), (d) normalized electrical properties of Jsc, Voc, FF, and Eff under long-term damp heat test (c) and thermal cycling test (d).

    图 6  柔性封装GaInP/GaAs薄膜太阳电池湿热实验后的暗I-V曲线, 表格中为计算得到的理想因子n1n2

    Fig. 6.  Dark I-V curves of encapsulated flexible GaInP/GaAs solar cells after damp heat test, the inserted tables are the calculated ideality factors n1 and n2.

    图 7  双结太阳电池等效电路图

    Fig. 7.  Equivalent circuit diagram of a double-junction solar cell.

    图 8  I-V曲线模拟结果, 表格中为仿真各结子电池采用的反向饱和电流I01数值及仿真得到的Voc数值

    Fig. 8.  Simulation results of the I-V curves, the inserted table are the reverse saturation current I01 adopted in the simulation of each subcell and the Voc obtained by simulation.

    表 1  仿真参数初始设置值

    Table 1.  Initial setting values of the simulation parameters.

    ParameterIph/
    mA
    I01/
    (10–17 A)
    I02/
    (10–25 A)
    n1n2Rsh/
    (105 Ω)
    GaInP13.962.094.3211
    GaAs13.003451.2×105211
    下载: 导出CSV
    Baidu
  • [1]

    Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X 2022 Prog. Photovoltaics Res. Appl. 30 687Google Scholar

    [2]

    Takamoto T, Kodama T, Yamaguchi H, Agui T, Takahashi N, Washio H, Hisamatsu T, Kaneiwa M, Okamoto K, Imaizumi M, Kibe K 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p1769

    [3]

    Imaizumi M, Nakamura T, Takamoto T, Ohshima T, Tajima M 2017 Prog. Photovoltaics Res. Appl. 25 161Google Scholar

    [4]

    Imaizumi M, Takamoto T, Sugimoto H, Ohshima T, Kawakita S 2019 Proceedings of the IEEE 46th Photovoltaic Specialists Conference Chicago, IL, USA, June 16–21, 2019 p1495

    [5]

    Park S, Bourgoin J C, Sim H, Baur C, Khorenko V, Cavani O, Bourcois J, Picard S, Boizot B 2018 Prog. Photovoltaics Res. Appl. 26 778Google Scholar

    [6]

    Raya-Armenta J M, Bazmohammadi N, Vasquez J C, Guerrero J M 2021 Sol. Energy Mater. Sol. Cells 233 111379Google Scholar

    [7]

    Kawakita S, Imaizumi M, Makita K, Nishinaga J, Sugaya T, Shibata H, Sato S I, Ohshima T 2016 Proceedings of the 43rd IEEE Photovoltaic Specialists Conference Portland, OR, USA, June 5–10, 2016 p2574

    [8]

    Takamoto T, Washio H, Juso H 2014 Proceedings of the 40th IEEE Photovoltaic Specialists Conference Denver, CO, USA, June 8–13, 2014 p1

    [9]

    Samberg J P, Zachary Carlin C, Bradshaw G K, Colter P C, Harmon J L, Allen J B, Hauser J R, Bedair S M 2013 Appl. Phys. Lett. 103 103503Google Scholar

    [10]

    Long J, Wu D, Huang X, Ye S, Li X, Ji L, Sun Q, Song M, Xing Z, Lu S 2021 Prog. Photovoltaics Res. Appl. 29 181Google Scholar

    [11]

    Geisz J F, Kurtz S, Wanlass M W, Ward J S, Duda A, Friedman D J, Olson J M, McMahon W E, Moriarty T E, Kiehl J T 2007 Appl. Phys. Lett. 91 023502Google Scholar

    [12]

    Schön J, Bissels G M M W, Mulder P, van Leest R H, Gruginskie N, Vlieg E, Chojniak D, Lackner D 2022 Prog. Photovoltaics Res. Appl. 30 1003Google Scholar

    [13]

    Shoji Y, Makita K, Sugaya T 2020 Jpn. J. Appl. Phys. 59 052003Google Scholar

    [14]

    Long J, Li X, Sun Q, Dai P, Zhang Y, Xuan J, Chen F, Song M, Honda S, Uchida S, Lu S 2021 Sol. RRL 5 2100066Google Scholar

    [15]

    Xuan J, Long J, Sun Q, Zhang Y, Li X, Wang X, Chen Z, Wu X, Lu S 2022 Sol. RRL 6 2200371Google Scholar

    [16]

    van Riesen S, Bett A W 2005 Prog. Photovoltaics Res. Appl. 13 369Google Scholar

    [17]

    King R R, Fetzer C M, Colter P C, Edmondson K M, Law D C, Stavrides A P, Yoon H, Kinsey G S, Cotal H L, Ermer J H, Sherif R A, Emery K, Metzger W, Ahrenkiel R K, Karam N H 2003 Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11–18, 2003 p622

    [18]

    Kurtz S R, Olson J M, Kibbler A 1990 Appl. Phys. Lett. 57 1922Google Scholar

    [19]

    Steiner M A, France R M, Buencuerpo J, Geisz J F, Nielsen M P, Pusch A, Olavarria W J, Young M, Ekins-Daukes N J 2020 Adv. Energy. Mater. 11 2002874Google Scholar

    [20]

    France R M, Geisz J F, Song T, Olavarria W, Young M, Kibbler A, Steiner M A 2022 Joule 6 1121Google Scholar

    [21]

    Sasaki K, Agui T, Nakaido K, Takahashi N, Onitsuka R, Takamoto T 2013 Proceedings of the 9th International Conference on Concentrator Photovoltaic Systems (CPV) Miyazaki, Japan, April 15–17, 2013 p22

    [22]

    Kayes B M, Zhang L, Twist R, Ding I K, Higashi G S 2014 IEEE J. Photovoltaics 4 729Google Scholar

    [23]

    张永, 单智发, 蔡建九, 吴洪清, 李俊承, 陈凯轩, 林志伟, 王向武 2013 62 158802Google Scholar

    Zhang Y, Shan Z F, Cai J J, Wu H Q, Li J C, Chen K X, Lin Z W, Wang X W 2013 Acta Phys. Sin. 62 158802Google Scholar

    [24]

    王笃祥, 李明阳, 毕京锋, 李森林, 刘冠洲, 宋明辉, 吴超瑜, 陈文浚 2017 发光学报 38 1217Google Scholar

    Wang D X, Li M Y, Bi J F, Li S L, Liu G Z, Song M H, Wu C Y, Chen W J 2017 Chin. J. Lumin. 38 1217Google Scholar

    [25]

    铁剑锐, 李晓东, 孙希鹏 2018 电源技术 42 1174

    Tie J R, Li X D, Sun X P 2018 Chin. J. Power Souces 42 1174

    [26]

    Kim T S, Kim H J, Geum D M, Han J H, Kim I S, Hong N, Ryu G H, Kang J, Choi W J, Yu K J 2021 ACS Appl. Mater. Interfacse 13 13248Google Scholar

    [27]

    Raj V, Haggren T, Wong W W, Tan H H, Jagadish C 2021 J. Phys. D: Appl. Phys. 55 143002Google Scholar

    [28]

    Yang J K, Jiao X Y, Yang Y, Wang X S, Song L L, Xue J, Chen Z C 2019 Proceedings of the Proceedings of the 6th China High Resolution Earth Observation Conference (CHREOC 2019) Chengdu, China, September 1, 2020 p385

    [29]

    Drees M, Stender C L, Chan R, Osowski M, Pan N 2020 Proceedings of the 2020 IEEE 47th Photovoltaic Specialists Conference (PVSC) Virtual Meeting, June 15–August 21, 2020 p1283

    [30]

    Hong H F, Huang T S, Uen W Y, Chen Y Y 2014 J. Nanomater. 2014 1Google Scholar

    [31]

    Mekhilef S, Saidur R, Kamalisarvestani M 2012 Renewable Sustainable Energy Rev. 16 2920Google Scholar

    [32]

    Faye I, Ndiaye A, Gecke R, Blieske U, Kobor D, Camara M 2019 Sol. Energy 191 161Google Scholar

    [33]

    Khan F, Kim J H 2019 Materials (Basel) 12 4047Google Scholar

    [34]

    Orlando V, Gabás M, Galiana B, Espinet-González P, Palanco S, Nuñez N, Vázquez M, Araki K, Algora C 2017 Prog. Photovoltaics Res. Appl. 25 97Google Scholar

    [35]

    Orlando V, Lombardero I, Gabás M, Nuñez N, Vázquez M, Espinet-González P, Bautista J, Romero R, Algora C 2019 Prog. Photovoltaics Res. Appl. 28 148Google Scholar

    [36]

    Nuñez N, Vazquez M, Barrutia L, Bautista J, Lombardero I, Zamorano J C, Hinojosa M, Gabas M, Algora C 2021 Sol. Energy Mater. Sol. Cells 230 111211Google Scholar

    [37]

    Espinet-González P, Algora C, Núñez N, Orlando V, Vázquez M, Bautista J, Araki K 2015 Prog. Photovoltaics Res. Appl. 23 559Google Scholar

    [38]

    Bauhuis G J, Mulder P, Schermer J J 2014 Prog. Photovoltaics Res. Appl. 22 656Google Scholar

    [39]

    Wanlass M, Ahrenkiel P, Albin D, Carapella J, Duda A, Emery K, Friedman D, Geisz J, Jones K, Kibbler A, Kiehl J, Kurtz S, McMahon W, Moriarty T, Olson J, Ptak A, Romero M, Ward S 2006 Proceedings of the 4th World Conference on Photovoltaic Energy Conversion Waikoloa, HI, USA, May 7–12, 2006 p729

    [40]

    Sun Q, Long J, Li X, Dai P, Zhang Y, Xuan J, Wang X, Chen Z, Wu X, Lu S 2022 IEEE Electron Device Lett. 43 584Google Scholar

    [41]

    Long J, Xiao M, Huang X, Xing Z, Li X, Dai P, Tan M, Wu Y, Song M, Lu S 2019 J. Cryst. Growth 513 38Google Scholar

    [42]

    Chen Z, Long J, Sun Q, Wang X, Wu X, Li X, Yu M, Luo X, Zhao H, Fu Y, Lu S 2022 Adv. Energy Sustainability Res. 4 2200136Google Scholar

    [43]

    郭永刚, 李媛媛, 左燕, 卢博, 杨增英 2022 合成材料老化与应用 51 51Google Scholar

    Guo Y G, Li Y Y, Zuo Y, Lu B, Yang Z Y 2022 Synth. Mater. Aging Appl. 51 51Google Scholar

    [44]

    丁盛, 张海鹏 2021 粘接 45 32

    Ding S, Zhang H P 2021 Adhesion 45 32

    [45]

    Huang X, Long J, Wu D, et al. 2020 Sol. Energy Mater. Sol. Cells 208 110398Google Scholar

    [46]

    Hussein R, Borchert D, Grabosch G, Fahrner W R 2001 Sol. Energy Mater. Sol. Cells 69 123Google Scholar

    [47]

    岳龙, 吴宜勇, 张延清, 胡建民, 孙承月, 郝明明, 兰慕杰 2014 63 188101Google Scholar

    Yue L, Wu Y Y, Zhang Y Q, Hu J M, Sun C Y, Hao M M, Lan M J 2014 Acta Phys. Sin. 63 188101Google Scholar

    [48]

    Braun A, Szabó N, Schwarzburg K, Hannappel T, Katz E A, Gordon J M 2011 Appl. Phys. Lett. 98 223506Google Scholar

    [49]

    van Dyk E E, Meyer E L 2004 Renewable Energy 29 333Google Scholar

    [50]

    齐佳红, 胡建民, 盛延辉, 吴宜勇, 徐建文, 王月媛, 杨晓明, 张子锐, 周扬 2015 64 108802Google Scholar

    Qi J H, Hu J M, Sheng Y H, Wu Y Y, Xu J W, Wang Y Y, Yang X M, Zhang Z R, Zhou Y 2015 Acta Phys. Sin. 64 108802Google Scholar

    [51]

    肖文波, 刘伟庆, 吴华明, 张华明 2018 67 198801Google Scholar

    Xiao W B, Liu W Q, Wu H M, Zhang H M 2018 Acta Phys. Sin. 67 198801Google Scholar

计量
  • 文章访问数:  7054
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-04-28
  • 上网日期:  2023-05-04
  • 刊出日期:  2023-07-05

/

返回文章
返回
Baidu
map