搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

源致内波引起的声场扰动及其检测方法

何兆阳 雷波 杨益新

引用本文:
Citation:

源致内波引起的声场扰动及其检测方法

何兆阳, 雷波, 杨益新

Acoustic field fluctuation caused by source-generated internal waves and its detection method

He Zhao-Yang, Lei Bo, Yang Yi-Xin
PDF
HTML
导出引用
  • 水下目标体在密度分层流体中航行时会激发内波, 这种内波常被称为源致内波, 具有难以消除的特性. 本文对声波穿过运动球体激发内波后产生的起伏进行研究, 结果表明源致内波对声场的影响范围远大于目标体, 声场变化的强度与覆盖范围均与目标穿越角度呈反比. 进一步提出了一种基于滑动窗主分量分析的处理方法, 通过短时窗信号子空间重构对声场微弱起伏进行增强处理, 并用湖上实验证明了所提方法具有稳健性. 研究结果表明, 基于源致内波声起伏的探测方法可以对目标进行探测, 具有覆盖范围广、稳健性高的优点.
    The development of noise reduction and silencing technology has brought great difficulties to underwater target detection, and more target characteristics need further studying. When a submerged target travels through density-stratified environment, the fluid will oscillate behind the target owing to gravity and buoyancy and generate internal waves, which are often referred to as source-generated internal waves. These internal waves are difficult to eliminate, which can cause the sound speed profiles to fluctuate. Therefore, these internal waves are expected to be effective for detecting underwater target. In this paper, the fluctuations of the received sound passing through the internal waves produced by a moving sphere are investigated. A typical shallow stratified environment is set up, and internal wave fields generated by a sphere moving in many horizontal directions are simulated. According to the simulation results, these internal wave fields have a much wider range than the scenario of the target body. Based on the relationship between the amplitude of the internal wave and the variation of sound speed, range–dependent sound speed profiles are constructed, and model based on ray acoustics is used to analyze the aberration strength of passing sound fields. Results show that the strength aberration is inversely proportional to the target passing angle, and these characteristics can be covered by the background. Focusing on this problem, an extraction method based on principal component analysis with sliding window is then proposed. The uncorrelation between the disturbance of internal wave and background signal is utilized, and interference is suppressed by removing the component in No.1 principal component space, and retaining the No.2–No.k subspace. Detection can be executed based on multi period received data from single hydrophone. A lake experiment is conducted to verify the performance. A detection scenario of single source and single receiver is established, and the AUV target crosses source–receiver line multiple times. The research results show that the detection scheme based on the acoustic aberration of source-generated internal wave has potential for underwater target detection, possessing the advantages of wide coverage and high robustness. Data on multi depths are processed to show that the detection performance is dependent on the depth of system. Since the acoustic strength variations are derived form local disturbance in channel, the proposed method may be affected by severe environment fluctuation, and further research is still needed.
      通信作者: 雷波, lei.bo@nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174311)和陕西省自然科学基础研究计划(批准号: 2023-JC-JQ-07)资助的课题.
      Corresponding author: Lei Bo, lei.bo@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12174311) and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2023-JC-JQ-07).
    [1]

    胡家雄, 伏同先 2001 舰船科学技术 14 2

    Hu J X, Fu T X 2001 Ship. Sci. Tech. 14 2

    [2]

    Tyler G D 1998 Johns Hopkins APL Technical Digest. 12 145

    [3]

    刘贯领, 凌国民, 严琪 2007 声学技术 26 335

    Liu G L, Ling G M, Yan Q 2007 Tech. Acoust. 26 335

    [4]

    Hamblen D W 1998 Sea Technol. 11 59

    [5]

    张宏军, 邱伯华, 石磊, 贺鹏 2001 舰船科学技术 14 6

    Zhang H J, Qiu B H, Shi L, He P 2001 Ship. Sci. Tech. 14 6

    [6]

    王勇, 鲁克明, 余广平, 张昭 2010 舰船电子工程 30 1

    Wang Y, Lu K M, Yu G P, Zhang Z 2010 Ship. Elect. Eng. 30 1

    [7]

    何琳 2006 舰船科学技术 28 9

    He L 2006 Ship. Sci. Tech. 28 9

    [8]

    Wei G, Le J, Dai S 2003 J. Appl. Math. Mech. 24 1025Google Scholar

    [9]

    魏岗, 戴世强 2006 力学进展 36 111

    Wei G, Dai S Q 2006 Adv. Mech. 36 111

    [10]

    Hopfinger E J, Flor J B 1991 Exp. Fluids. 11 255Google Scholar

    [11]

    韩鹏, 钱洪宝, 李宇航, 揭晓蒙 2020 海洋工程 38 148

    Han P, Qian H B, Li Y H, Jie X M 2020 Oceanic Eng. 38 148

    [12]

    姚志崇, 赵峰 2011 第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集 西安, 中国 09–19, 2011 p106

    Yao Z C, Zhao F 2011 Proceedings of the 23rd National Hydrodynamics Symposium and the 10th National Hydrodynamics Academic Conference Xi’an, China, September 19, 2011 p106 (in Chinese)

    [13]

    Khalil S S, Hossein M S 2018 Appl. Ocean Res. 78 281Google Scholar

    [14]

    Dirk Tielbürger, Steven Finette, Stephen Wolf 1997 J. Acoust. Soc. Am. 101 789Google Scholar

    [15]

    秦继兴, Katsnel-Son Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 9

    Qin J X, Katsnel-Son B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 9

    [16]

    李沁然, 孙超, 谢磊 2022 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [17]

    季桂花, 何利, 张振洲, 甘维明 2021 声学学报 46 1132

    Ji G H, He L, Zhang Z Z, Gan W M 2021 Acta Acustica 46 1132

    [18]

    Hudimac AA 1961 J. Fluid Mech. 11 229Google Scholar

    [19]

    Yeung R W, Nguyen T C 1999 J. Fluid Mech. 35 85

    [20]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425Google Scholar

    [21]

    Robey H F 1997 Phys. Fluids 9 3353Google Scholar

    [22]

    Voisin B 1994 J. Fluid Mech. 261 333Google Scholar

    [23]

    Voisin B 2007 J. Fluid Mech 574 273Google Scholar

    [24]

    张效慈 2005 船舶力学 4 25Google Scholar

    Zhang X C 2005 J. Ship. Mech 4 25Google Scholar

    [25]

    胥炳臣 2021 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu B C 2021 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese)

    [26]

    Xue F Y, Jin W, Qiu S, Yang J 2020 IEEE Access p1

    [27]

    Nguyen H P 1993 Submarine Detection from Space (Annapolis, Md: Naval Institute Press)

    [28]

    Leonard D A U. S. Patent 4 893 924 [1990-01-16]

    [29]

    Stewart R H 1985 Methods of Satellite Oceanography (United States: University of California Press)

    [30]

    于杰, 黄韦艮 2006 鱼雷技术 14 8

    Yu J, Huang W G 2006 Torpedo Tech. 14 8

    [31]

    师于杰, 任海刚 2015 舰船电子工程 35 5

    Shi Y J, Ren H G 2015 Ship. Elect. Eng 35 5

    [32]

    余伟, 尤红建, 胡玉新, 刘瑞 2023 电子与信息学报 45 282

    Yu W, You H J, Hu Y X, Liu R 2023 J. Elect. Info. Tech. 45 282

    [33]

    潘宝珠, 姜舒昊, 胡琪, 葛浥尘, 汤靖 2020 舰船科学技术 42 67

    Pan B Z, Jiang S H, Hu Q, Ge Y C, Tang J 2020 Ship. Sci. Tech 42 67

    [34]

    潘彬彬, 崔维成, 叶聪, 刘正元 2012 船舶力学 16 58

    Pan B B, Cui W C, Ye C, Liu Z Y 2012 J. Ship. Mech 16 58

    [35]

    沈国光, 李德筠, 王日新, 徐肇廷 1998 实验力学 13 59

    Shen G G, Li D Y, Wang R X, Xu Z T 1998 J. Exper. Mech. 13 59

    [36]

    叶春生, 蔡波 2011 舰船科学技术 33 25

    Ye C S, Cai B 2011 Ship. Sci. Tech 33 25

    [37]

    Wang A C, Xu D, Gao J P 2021 Ocean Eng. 235 109314Google Scholar

    [38]

    Makarov S, Chashechkin Y D 1981 J. Appl. Mech. Tech. Phys. 22 772

    [39]

    Munk W H, F Zachariasen 1976 J. Acoust. Soc. Am. 59 818

    [40]

    刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (北京: 科学出版社) 第95页

    Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (Beijing: Science Press) p95 (in Chinese)

    [41]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics (New York: Springer)

    [42]

    Ye Z, Hoskinson E, Dewey R K 1997 J. Acoust. Soc. Am. 102 1964Google Scholar

    [43]

    王树青, 梁丙臣 2013 海洋工程波浪力学 (青岛: 中国海洋大学出版社) 第18页

    Wang S Q, Liang B Q 2013 Ocean Engineering Wave Mechanic (Qingdao: Ocean University of China Press) p18 (in Chinese)

  • 图 1  分层流体垂向分布与随体坐标系 (a) 浅海密度与浮力频率垂向分布; (b) 随体坐标系

    Fig. 1.  Vertical distribution of stratified fluids and dependent coordinate system: (a) Vertical distribution of density and buoyancy frequency in shallow water; (b) dependent coordinate system.

    图 2  与经典文献结果对比 (a) 仿真结果; (b) 文献结果

    Fig. 2.  Comparison with classical results: (a) Simulation result; (b) classical result.

    图 3  源致内波多深度切面

    Fig. 3.  Multi depth section of source-generated internal waves.

    图 4  Y = 0, Z = 20的源致内波波形

    Fig. 4.  Source-generated internal wave at Y = 0, Z = 20.

    图 5  探测场景示意图

    Fig. 5.  Diagram of detection scene.

    图 6  各航向的内波场在声屏障平面内截面 (a) 穿越示意图; (b) 声屏障平面内的源致内波分布

    Fig. 6.  Internal waves in each heading direction within the sound barrier: (a) Diagram of crossing event; (b) distribution of source-generated internal wave within sound barrier.

    图 7  水声环境与声速扰动率 (a) 声速剖面; (b) 声速扰动率垂向分布

    Fig. 7.  Underwater acoustic environment and sound speed disturbance rate: (a) Sound speed profile; (b) sound speed disturbance rate.

    图 8  声速剖面起伏与声场分析 (a) 声屏障平面内的声速剖面起伏; (b) 无内波时声线分布; (c) 有内波时声线分布; (d) 声线幅度起伏倍数; (e) 限制声源开角后的声场强度起伏; (f)声源全向开角的声场强度起伏

    Fig. 8.  Fluctuation of sound speed profile and sound field: (a) Fluctuation of sound speed profiles within the sound barrier; (b) distribution of acoustic ray with internal wave; (c) distribution of acoustic ray without internal wave; (d) amplitude fluctuation multiple of acoustic ray; (e) fluctuation of sound field intensity of source with limited opening angle; (f) fluctuation of sound field intensity of omnidirectional source.

    图 9  特征提取与目标探测流程

    Fig. 9.  Characteristics extraction and target detection process.

    图 10  试验布置 (a) 试验布置图; (b) AUV 目标; (c) 试验场景图; (d) AUV航迹

    Fig. 10.  Experiment arrangement: (a) Diagram of experiment; (b) AUV target; (c) experiment scene; (d) trajectory of AUV.

    图 11  声速剖面与接收声场 (a) 湖试声速剖面; (b) 仿真信道冲激响应; (c) 接收信号脉冲压缩结果; (d) 信号矩阵; (e) 穿越过程与目标强度变化; (f) 本征声线

    Fig. 11.  Sound speed profile and received sound field: (a) Sound speed profile of lake experiment; (b) simulation of channel impulse response; (c) pulse compression results of received signals; (d) signal matrix; (e) target strength variations during a crossing event; (f) distribution of eigenray.

    图 12  信号处理结果 (a) 声场变化特征提取矩阵; (b) 目标检测曲线

    Fig. 12.  Signal processing results: (a) Characteristic extraction matrix of acoustic strength aberration; (b) target detection curves.

    图 13  其他两深度试验结果 (a) 深度6 m的航迹; (b) 深度25 m的航迹; (c) 深度6 m的检测曲线; (d) 深度25 m的检测曲线

    Fig. 13.  Results on other two depths: (a) Trajectory on depth of 6 m; (b) trajectory on depth of 25 m; (c) detection curves on depth of 6 m; (d) detection curves on depth of 25 m.

    表 1  密度分布参数的条件

    Table 1.  Conditions of density distribution parameters.

    水面密度/$({\rm{k} }{\rm{g} }{\cdot}{ {\rm{m} } }^{-3})$水底密度/$({\rm{k} }{\rm{g} }{\cdot} { {\rm{m} } }^{-3})$准均匀层/$ {\rm{m}} $密跃层/$ {\rm{m}} $水深/$ {\rm{m}} $地转频率/cph (1 cph = 1/3600 Hz)
    $ 1020.8 $$ 1025.2 $$ 0—50 $$ 50—150 $200$ 0.0138 $
    下载: 导出CSV
    Baidu
  • [1]

    胡家雄, 伏同先 2001 舰船科学技术 14 2

    Hu J X, Fu T X 2001 Ship. Sci. Tech. 14 2

    [2]

    Tyler G D 1998 Johns Hopkins APL Technical Digest. 12 145

    [3]

    刘贯领, 凌国民, 严琪 2007 声学技术 26 335

    Liu G L, Ling G M, Yan Q 2007 Tech. Acoust. 26 335

    [4]

    Hamblen D W 1998 Sea Technol. 11 59

    [5]

    张宏军, 邱伯华, 石磊, 贺鹏 2001 舰船科学技术 14 6

    Zhang H J, Qiu B H, Shi L, He P 2001 Ship. Sci. Tech. 14 6

    [6]

    王勇, 鲁克明, 余广平, 张昭 2010 舰船电子工程 30 1

    Wang Y, Lu K M, Yu G P, Zhang Z 2010 Ship. Elect. Eng. 30 1

    [7]

    何琳 2006 舰船科学技术 28 9

    He L 2006 Ship. Sci. Tech. 28 9

    [8]

    Wei G, Le J, Dai S 2003 J. Appl. Math. Mech. 24 1025Google Scholar

    [9]

    魏岗, 戴世强 2006 力学进展 36 111

    Wei G, Dai S Q 2006 Adv. Mech. 36 111

    [10]

    Hopfinger E J, Flor J B 1991 Exp. Fluids. 11 255Google Scholar

    [11]

    韩鹏, 钱洪宝, 李宇航, 揭晓蒙 2020 海洋工程 38 148

    Han P, Qian H B, Li Y H, Jie X M 2020 Oceanic Eng. 38 148

    [12]

    姚志崇, 赵峰 2011 第二十三届全国水动力学研讨会暨第十届全国水动力学学术会议文集 西安, 中国 09–19, 2011 p106

    Yao Z C, Zhao F 2011 Proceedings of the 23rd National Hydrodynamics Symposium and the 10th National Hydrodynamics Academic Conference Xi’an, China, September 19, 2011 p106 (in Chinese)

    [13]

    Khalil S S, Hossein M S 2018 Appl. Ocean Res. 78 281Google Scholar

    [14]

    Dirk Tielbürger, Steven Finette, Stephen Wolf 1997 J. Acoust. Soc. Am. 101 789Google Scholar

    [15]

    秦继兴, Katsnel-Son Boris, 李整林, 张仁和, 骆文于 2016 声学学报 41 9

    Qin J X, Katsnel-Son B, Li Z L, Zhang R H, Luo W Y 2016 Acta Acustica 41 9

    [16]

    李沁然, 孙超, 谢磊 2022 71 024302Google Scholar

    Li Q R, Sun C, Xie L 2022 Acta Phys. Sin. 71 024302Google Scholar

    [17]

    季桂花, 何利, 张振洲, 甘维明 2021 声学学报 46 1132

    Ji G H, He L, Zhang Z Z, Gan W M 2021 Acta Acustica 46 1132

    [18]

    Hudimac AA 1961 J. Fluid Mech. 11 229Google Scholar

    [19]

    Yeung R W, Nguyen T C 1999 J. Fluid Mech. 35 85

    [20]

    Keller J B, Munk W H 1970 Phys. Fluids 13 1425Google Scholar

    [21]

    Robey H F 1997 Phys. Fluids 9 3353Google Scholar

    [22]

    Voisin B 1994 J. Fluid Mech. 261 333Google Scholar

    [23]

    Voisin B 2007 J. Fluid Mech 574 273Google Scholar

    [24]

    张效慈 2005 船舶力学 4 25Google Scholar

    Zhang X C 2005 J. Ship. Mech 4 25Google Scholar

    [25]

    胥炳臣 2021 硕士学位论文 (哈尔滨: 哈尔滨工程大学)

    Xu B C 2021 M. S. Thesis (Harbin: Harbin Engineering University) (in Chinese)

    [26]

    Xue F Y, Jin W, Qiu S, Yang J 2020 IEEE Access p1

    [27]

    Nguyen H P 1993 Submarine Detection from Space (Annapolis, Md: Naval Institute Press)

    [28]

    Leonard D A U. S. Patent 4 893 924 [1990-01-16]

    [29]

    Stewart R H 1985 Methods of Satellite Oceanography (United States: University of California Press)

    [30]

    于杰, 黄韦艮 2006 鱼雷技术 14 8

    Yu J, Huang W G 2006 Torpedo Tech. 14 8

    [31]

    师于杰, 任海刚 2015 舰船电子工程 35 5

    Shi Y J, Ren H G 2015 Ship. Elect. Eng 35 5

    [32]

    余伟, 尤红建, 胡玉新, 刘瑞 2023 电子与信息学报 45 282

    Yu W, You H J, Hu Y X, Liu R 2023 J. Elect. Info. Tech. 45 282

    [33]

    潘宝珠, 姜舒昊, 胡琪, 葛浥尘, 汤靖 2020 舰船科学技术 42 67

    Pan B Z, Jiang S H, Hu Q, Ge Y C, Tang J 2020 Ship. Sci. Tech 42 67

    [34]

    潘彬彬, 崔维成, 叶聪, 刘正元 2012 船舶力学 16 58

    Pan B B, Cui W C, Ye C, Liu Z Y 2012 J. Ship. Mech 16 58

    [35]

    沈国光, 李德筠, 王日新, 徐肇廷 1998 实验力学 13 59

    Shen G G, Li D Y, Wang R X, Xu Z T 1998 J. Exper. Mech. 13 59

    [36]

    叶春生, 蔡波 2011 舰船科学技术 33 25

    Ye C S, Cai B 2011 Ship. Sci. Tech 33 25

    [37]

    Wang A C, Xu D, Gao J P 2021 Ocean Eng. 235 109314Google Scholar

    [38]

    Makarov S, Chashechkin Y D 1981 J. Appl. Mech. Tech. Phys. 22 772

    [39]

    Munk W H, F Zachariasen 1976 J. Acoust. Soc. Am. 59 818

    [40]

    刘伯胜, 黄益旺, 陈文剑, 雷家煜 2019 水声学原理 (北京: 科学出版社) 第95页

    Liu B S, Huang Y W, Chen W J, Lei J Y 2019 Principles of Underwater Acoustics (Beijing: Science Press) p95 (in Chinese)

    [41]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2000 Computational Ocean Acoustics (New York: Springer)

    [42]

    Ye Z, Hoskinson E, Dewey R K 1997 J. Acoust. Soc. Am. 102 1964Google Scholar

    [43]

    王树青, 梁丙臣 2013 海洋工程波浪力学 (青岛: 中国海洋大学出版社) 第18页

    Wang S Q, Liang B Q 2013 Ocean Engineering Wave Mechanic (Qingdao: Ocean University of China Press) p18 (in Chinese)

  • [1] 邓玉鑫, 刘雄厚, 杨益新. 浅海环境中用于目标深度属性判别的线谱起伏特征量分析.  , 2024, 73(13): 134301. doi: 10.7498/aps.73.20231911
    [2] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器.  , 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [3] 王嘉伟, 李健博, 李番, 郑立昂, 高子超, 安炳南, 马正磊, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的程控低噪声高精度电压基准源.  , 2023, 72(4): 049502. doi: 10.7498/aps.72.20222119
    [4] 李番, 王嘉伟, 高子超, 李健博, 安炳南, 李瑞鑫, 白禹, 尹王保, 田龙, 郑耀辉. 面向空间引力波探测的激光强度噪声评估系统.  , 2022, 71(20): 209501. doi: 10.7498/aps.71.20220841
    [5] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征.  , 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [6] 宋忠长, 张金虎, 冯文, 杨武夷, 张宇. 齿鲸生物声呐目标探测研究综述.  , 2021, 70(15): 154302. doi: 10.7498/aps.70.20210284
    [7] 寇添, 于雷, 周中良, 王海晏, 阮铖巍, 刘宏强. 机载光电系统探测空中机动目标的光谱辐射特征研究.  , 2017, 66(4): 049501. doi: 10.7498/aps.66.049501
    [8] 胡珍, 范军, 张培珍, 吴玉双. 水下掩埋目标的散射声场计算与实验.  , 2016, 65(6): 064301. doi: 10.7498/aps.65.064301
    [9] 王松, 武占成, 唐小金, 孙永卫, 易忠. 聚酰亚胺电导率随温度和电场强度的变化规律.  , 2016, 65(2): 025201. doi: 10.7498/aps.65.025201
    [10] 彭博栋, 宋岩, 盛亮, 王培伟, 黑东炜, 赵军, 李阳, 张美, 李奎念. 辐射致折射率变化用于MeV级脉冲辐射探测的初步研究.  , 2016, 65(15): 157801. doi: 10.7498/aps.65.157801
    [11] 行鸿彦, 张强, 徐伟. 海杂波FRFT域的分形特征分析及小目标检测方法.  , 2015, 64(11): 110502. doi: 10.7498/aps.64.110502
    [12] 徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁. 金属目标原子晶格结构对其量子雷达散射截面的影响.  , 2015, 64(15): 154203. doi: 10.7498/aps.64.154203
    [13] 连天虹, 王石语, 蔡德芳, 李兵斌, 过振. 多子光束相干发射小目标探测研究.  , 2014, 63(3): 034203. doi: 10.7498/aps.63.034203
    [14] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究.  , 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [15] 张鹏, 张晓娟. 基于等效电流源的分层媒质目标反演研究.  , 2013, 62(16): 164201. doi: 10.7498/aps.62.164201
    [16] 陈云飞, 李桂娟, 王振山, 张明伟, 贾兵. 水中目标回波亮点统计特征研究.  , 2013, 62(8): 084302. doi: 10.7498/aps.62.084302
    [17] 梁善勇, 王江安, 宗思光, 吴荣华, 马治国, 王晓宇, 王乐东. 基于多重散射强度和偏振特征的舰船尾流气泡激光探测方法.  , 2013, 62(6): 060704. doi: 10.7498/aps.62.060704
    [18] 李方浩, 章海军, 张冬仙. 环形定子的激光致表面波机理及可视化探测研究.  , 2013, 62(22): 224209. doi: 10.7498/aps.62.224209
    [19] 帅文娟, 冯少彤, 聂守平, 朱竹青. 基于主分量分析法的小波域三维目标序列图像隐藏技术.  , 2011, 60(3): 034203. doi: 10.7498/aps.60.034203
    [20] 余赟, 惠俊英, 陈阳, 孙国仓, 滕超. 浅海低频声场中目标深度分类方法研究.  , 2009, 58(9): 6335-6343. doi: 10.7498/aps.58.6335
计量
  • 文章访问数:  3199
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-09
  • 修回日期:  2023-05-03
  • 上网日期:  2023-05-16
  • 刊出日期:  2023-07-20

/

返回文章
返回
Baidu
map