搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

莫尔晶格中的激子绝缘体

古杰 马立国

引用本文:
Citation:

莫尔晶格中的激子绝缘体

古杰, 马立国

Exciton insulator in a moiré lattice

Gu Jie, Ma Li-Guo
PDF
HTML
导出引用
  • 当载流子动能被抑制后, 双层量子阱中的电子-空穴可以通过层间库仑相互作用形成激子绝缘体, 而抑制动能的主要手段为施加外部磁场产生朗道能级. 在二维莫尔晶格中通过能带折叠可以显著抑制载流子动能进而形成莫尔平带. 本文主要介绍通过莫尔平带实现无外加磁场的激子绝缘体, 着重介绍几个不同的实验思路, 并展示如何利用差分反射谱、层间激子光致发光谱、2s激子探测谱、量子电容以及微波阻抗谱探测激子绝缘体信号. 总的来说, 莫尔晶格中形成的激子绝缘体为在固体环境中研究Bose-Hubbard模型提供了很好的平台, 其研究内容可包括激子莫特绝缘体、激子超流以及它们之间的连续转变等.
    Interlayer electron and hole can be paired up through coulomb interaction to form an exciton insulator when their kinetic energy is substantially smaller than the interaction energy. The traditional platform to realize such an interlayer interaction is the double quantum well with dielectric material between electron and hole, for which an external magnetic field is required to generate Landau level flat bands that can reduce the kinetic energy of charged carriers. When both quantum wells are at the half filling of the lowest landau level, the electron-electron repulsive interaction, by the particle-hole transformation in one well, will be equivalent to electron-hole attractive interaction, from which interlayer exciton and its condensation can emerge. In a two-dimensional twisted homostructure or an angle aligned heterostructure, there exists a moiré superlattice, in which bands are folded into the mini-Brillouin zone by the large moiré period. Gap opening at the boundary of mini-Brillouin zone can form the well-known moiré flat band. This review will discuss how to use the moiré flat bands to generate exciton insulator in the absence of external magnetic field in transitional metal dichalcogenide (TMD) moiré heterostructure. Unlike the double quantum well where symmetric well geometry is used, the moiré related sample can have multiple different geometries, including monolayer TMD-hexagonal boron nitride-moiré structure, moiré-moiré structure, and monolayer TMD-bilayer TMD structure. The carriers in those structures can be well tuned to locate equally in different layers, and particle-hole transformation in the moiré first Hubbard band can transform the interlayer repulsive coulomb interaction into attractive interaction, which is the same as that in quantum well under magnetic field. We will show that by using differential contrast reflection spectrum, interlayer photoluminescence, 2s exciton sensing, quantum capacitance and microwave impedance microscopy, the signature of exciton fluid can be identified. The excitonic coherence features in those structures will promise by using the coulomb drag technique and counter flow technique in future. In general, exciton in moiré lattice is a promising candidate for studying the Bose-Hubbard model in solids and can well realize exciton superfluidity, excitonic mott insulator as well as the crossover between them.
      通信作者: 古杰, gujielog@fudan.edu.cn ; 马立国, liguo.ma@cornell.edu
      Corresponding author: Gu Jie, gujielog@fudan.edu.cn ; Ma Li-Guo, liguo.ma@cornell.edu
    [1]

    Mott N F 1961 Philos. Mag. J. Theor. Exp. Appl. Phys. 6 287

    [2]

    Blatt J M, Böer K W, Brandt W 1962 Phys. Rev. 126 1691Google Scholar

    [3]

    Knox R S 1963 Theory of excitons (New York: Academic Press) p100

    [4]

    Jérome D, Rice T M, Kohn W 1967 Phys. Rev. 158 462Google Scholar

    [5]

    娄文凯, 常凯 2022 物理 51 303Google Scholar

    Lou W K, Chang K 2022 Physics 51 303Google Scholar

    [6]

    Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H 2009 Phys. Rev. Lett. 103 026402Google Scholar

    [7]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, van Wezel J, Abbamonte P 2017 Science 358 1314Google Scholar

    [8]

    Lin Z, Wang C, Balassis A, Echeverry J P, Vasenko A S, Silkin V M, Chulkov E V, Shi Y, Zhang J, Guo J, Zhu X 2022 Phys. Rev. Lett. 129 187601Google Scholar

    [9]

    Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jäck B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A, Wu S 2022 Nat. Phys. 18 87Google Scholar

    [10]

    Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M, Cobden D H 2022 Nat. Phys. 18 94Google Scholar

    [11]

    Bucher B, Steiner P, Wachter P 1991 Phys. Rev. Lett. 67 2717Google Scholar

    [12]

    Du L, Li X, Lou W, Sullivan G, Chang K, Kono J, Du R R 2017 Nat. Commun. 8 1971Google Scholar

    [13]

    Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A, Georges A 2020 Phys. Rev. Lett. 124 197601Google Scholar

    [14]

    Baldini E, Zong A, Choi D, Lee C, Michael M H, Windgaetter L, Mazin I I, Latini S, Azoury D, Lv B, Kogar A, Wang Y, Lu Y, Takayama T, Takagi H, Millis A J, Rubio A, Demler E, Gedik N 2020 arXiv 2007.02909 [cond-mat. str-el]

    [15]

    Suen Y W, Engel L W, Santos M B, Shayegan M, Tsui D C 1992 Phys. Rev. Lett. 68 1379Google Scholar

    [16]

    Spielman I B, Eisenstein J P, Pfeiffer L N, West K W 2000 Phys. Rev. Lett. 84 5808Google Scholar

    [17]

    Kellogg M, Spielman I B, Eisenstein J P, Pfeiffer L N, West K W 2002 Phys. Rev. Lett. 88 126804Google Scholar

    [18]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691Google Scholar

    [19]

    Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159Google Scholar

    [20]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [21]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [22]

    Li J I A, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Nat. Phys. 13 751Google Scholar

    [23]

    Liu X, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746Google Scholar

    [24]

    Liu X, Li J I A, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P, Dean C R 2022 Science 375 205Google Scholar

    [25]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [26]

    Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, Andrei E Y 2010 Nat. Phys. 6 109Google Scholar

    [27]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233Google Scholar

    [28]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [29]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [30]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [31]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [32]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [33]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [34]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [35]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [36]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [37]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [38]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [39]

    Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, Ashoori R C 2019 Phys. Rev. Lett. 123 046601Google Scholar

    [40]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [41]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [42]

    Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [43]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [44]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [45]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [46]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [47]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [48]

    Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R, Hone J 2019 Nat. Nanotechnol. 14 1029Google Scholar

    [49]

    Jin C, Regan E C, Wang D, Iqbal Bakti Utama M, Yang C S, Cain J, Qin Y, Shen Y, Zheng Z, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nat. Phys. 15 1140Google Scholar

    [50]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [51]

    Karni O, Barré E, Lau S C, Gillen R, Ma E Y, Kim B, Watanabe K, Taniguchi T, Maultzsch J, Barmak K, Page R H, Heinz T F 2019 Phys. Rev. Lett. 123 247402Google Scholar

    [52]

    Lu X, Tang J, Wallbank J R, Wang S, Shen C, Wu S, Chen P, Yang W, Zhang J, Watanabe K, Taniguchi T, Yang R, Shi D, Efetov D K, Fal’ko V I, Zhang G 2020 Phys. Rev. B 102 045409Google Scholar

    [53]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [54]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [55]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [56]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [57]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [58]

    Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2020 Nature 580 472Google Scholar

    [59]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [60]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [61]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [62]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [63]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [64]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [65]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [66]

    McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580Google Scholar

    [67]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [68]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [69]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [70]

    Bai Y, Zhou L, Wang J, Wu W, McGilly L J, Halbertal D, Lo C F B, Liu F, Ardelean J, Rivera P, Finney N R, Yang X C, Basov D N, Yao W, Xu X, Hone J, Pasupathy A N, Zhu X Y 2020 Nat. Mater. 19 1068Google Scholar

    [71]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [72]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [73]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [74]

    Zhang L, Zhang Z, Wu F, Wang D, Gogna R, Hou S, Watanabe K, Taniguchi T, Kulkarni K, Kuo T, Forrest S R, Deng H 2020 Nat. Commun. 11 5888Google Scholar

    [75]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [76]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [77]

    Lee K, Utama M I B, Kahn S, Samudrala A, Leconte N, Yang B, Wang S, Watanabe K, Taniguchi T, Altoé M V P, Zhang G, Weber-Bargioni A, Crommie M, Ashby P D, Jung J, Wang F, Zettl A 2020 Sci. Adv. 6 eabd1919Google Scholar

    [78]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [79]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, Shan J 2021 Nat. Nanotechnol. 16 52Google Scholar

    [80]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [81]

    Utama M I B, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, Ashby P D, Weber-Bargioni A, Zettl A, Jozwiak C, Jung J, Rotenberg E, Bostwick A, Wang F 2021 Nat. Phys. 17 184Google Scholar

    [82]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [83]

    Zhang L, Wu F, Hou S, Zhang Z, Chou Y H, Watanabe K, Taniguchi T, Forrest S R, Deng H 2021 Nature 591 61Google Scholar

    [84]

    Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [85]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261Google Scholar

    [86]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 592 43Google Scholar

    [87]

    Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2021 Nature 592 214Google Scholar

    [88]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [89]

    Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [90]

    Han T, Yang J, Zhang Q, Wang L, Watanabe K, Taniguchi T, McEuen P L, Ju L 2021 Phys. Rev. Lett. 126 146402Google Scholar

    [91]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [92]

    Li Y, Dietrich S, Forsythe C, Taniguchi T, Watanabe K, Moon P, Dean C R 2021 Nat. Nanotechnol. 16 525Google Scholar

    [93]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [94]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [95]

    Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A, Yazdani A 2021 Nat. Commun. 12 2732Google Scholar

    [96]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2021 Nano Lett. 21 4299Google Scholar

    [97]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [98]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [99]

    Liu E, Barré E, van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C, Lui C H 2021 Nature 594 46Google Scholar

    [100]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [101]

    Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E, Young A F 2021 Science 372 1323Google Scholar

    [102]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [103]

    Jin C, Tao Z, Li T, Xu Y, Tang Y, Zhu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [104]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [105]

    Rodan-Legrain D, Cao Y, Park J M, de la Barrera S C, Randeria M T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nat. Nanotechnol. 16 769Google Scholar

    [106]

    Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F, Li X 2021 Nat. Mater. 20 1100Google Scholar

    [107]

    He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Commun. 12 4727Google Scholar

    [108]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [109]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [110]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [111]

    Hesp N C H, Torre I, Rodan-Legrain D, Novelli P, Cao Y, Carr S, Fang S, Stepanov P, Barcons-Ruiz D, Herzig Sheinfux H, Watanabe K, Taniguchi T, Efetov D K, Kaxiras E, Jarillo-Herrero P, Polini M, Koppens F H L 2021 Nat. Phys. 17 1162Google Scholar

    [112]

    Li H, Li S, Naik M H, Xie J, Li X, Regan E, Wang D, Zhao W, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [113]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [114]

    Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [115]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [116]

    Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nat. Phys. 17 1210Google Scholar

    [117]

    Wang X, Zhu J, Seyler K L, Rivera P, Zheng H, Wang Y, He M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Gamelin D R, Yao W, Xu X 2021 Nat. Nanotechnol. 16 1208Google Scholar

    [118]

    Song T, Sun Q C, Anderson E, Wang C, Qian J, Taniguchi T, Watanabe K, McGuire M A, Stöhr R, Xiao D, Cao T, Wrachtrup J, Xu X 2021 Science 374 1140Google Scholar

    [119]

    Choi Y, Kim H, Lewandowski C, Peng Y, Thomson A, Polski R, Zhang Y, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nat. Phys. 17 1375Google Scholar

    [120]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [121]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [122]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [123]

    Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P, Young A F 2022 Nat. Phys. 18 42Google Scholar

    [124]

    Wang Y, Herzog-Arbeitman J, Burg G W, Zhu J, Watanabe K, Taniguchi T, MacDonald A H, Bernevig B A, Tutuc E 2022 Nat. Phys. 18 48Google Scholar

    [125]

    Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2022 Science 375 437Google Scholar

    [126]

    Xu Y, Ray A, Shao Y T, Jiang S, Lee K, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Muller D A, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 143Google Scholar

    [127]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [128]

    Karni O, Barré E, Pareek V, Georgaras J D, Man M K L, Sahoo C, Bacon D R, Zhu X, Ribeiro H B, O’Beirne A L, Hu J, Al-Mahboob A, Abdelrasoul M M M, Chan N S, Karmakar A, Winchester A J, Kim B, Watanabe K, Taniguchi T, Barmak K, Madéo J, da Jornada F H, Heinz T F, Dani K M 2022 Nature 603 247Google Scholar

    [129]

    Yang J, Chen G, Han T, Zhang Q, Zhang Y H, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Zhang Y, Wang F, Ju L 2022 Science 375 1295Google Scholar

    [130]

    Wang X, Xiao C, Park H, Zhu J, Wang C, Taniguchi T, Watanabe K, Yan J, Xiao D, Gamelin D R, Yao W, Xu X 2022 Nature 604 468Google Scholar

    [131]

    Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, Miao F 2022 Nature 609 479Google Scholar

    [132]

    Turkel S, Swann J, Zhu Z, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, Pasupathy A N 2022 Science 376 193Google Scholar

    [133]

    Finney J, Sharpe A L, Fox E J, Hsueh C L, Parker D E, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Dean C R, Vishwanath A, Kastner M A, Goldhaber-Gordon D 2022 Proc. Natl. Acad. Sci. 119 e2118482119Google Scholar

    [134]

    Barré E, Karni O, Liu E, O’Beirne A L, Chen X, Ribeiro H B, Yu L, Kim B, Watanabe K, Taniguchi T, Barmak K, Lui C H, Refaely-Abramson S, da Jornada F H, Heinz T F 2022 Science 376 406Google Scholar

    [135]

    Liu X, Zhang N J, Watanabe K, Taniguchi T, Li J I A 2022 Nat. Phys. 18 522Google Scholar

    [136]

    Jaoui A, Das I, Di Battista G, et al. 2022 Nat. Phys. 18 633Google Scholar

    [137]

    Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2022 Nature 606 494Google Scholar

    [138]

    Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W, Zhang G 2022 Nat. Commun. 13 3292Google Scholar

    [139]

    de la Barrera S C, Aronson S, Zheng Z, Watanabe K, Taniguchi T, Ma Q, Jarillo-Herrero P, Ashoori R 2022 Nat. Phys. 18 771Google Scholar

    [140]

    Zhao W, Kang K, Li L, Tschirhart C, Redekop E, Watanabe K, Taniguchi T, Young A, Shan J, Mak K F 2022 arXiv 2207.02312 [cond-mat. mes-hall]

    [141]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Mak K F, Shan J 2022 Nat. Commun. 13 4271Google Scholar

    [142]

    Burg G W, Khalaf E, Wang Y, Watanabe K, Taniguchi T, Tutuc E 2022 Nat. Mater. 21 884Google Scholar

    [143]

    Park J M, Cao Y, Xia L Q, Sun S, Watanabe K, Taniguchi T, Jarillo-Herrero P 2022 Nat. Mater. 21 877Google Scholar

    [144]

    Naik M H, Regan E C, Zhang Z, et al. 2022 Nature 609 52Google Scholar

    [145]

    Xu Y, Kang K, Watanabe K, Taniguchi T, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 934Google Scholar

    [146]

    Lin J X, Siriviboon P, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S, Li J I A 2022 Nat. Phys. 18 1221Google Scholar

    [147]

    Zhao W, Shen B, Tao Z, Han Z, Kang K, Watanabe K, Taniguchi T, Mak K F, Shan J 2022 arXiv 2211.00263 [cond-mat. str-el]

    [148]

    Zhang M, Zhao X, Watanabe K, Taniguchi T, Zhu Z, Wu F, Li Y, Xu Y 2022 Phys. Rev. X 12 041015

    [149]

    Susarla S, Naik M H, Blach D D, Zipfel J, Taniguchi T, Watanabe K, Huang L, Ramesh R, da Jornada F H, Louie S G, Ercius P, Raja A 2022 Science 378 1235Google Scholar

    [150]

    Sood A, Haber J B, Carlström J, et al. 2023 Nat. Nanotechnol. 18 29Google Scholar

    [151]

    Shen C, Ledwith P J, Watanabe K, Taniguchi T, Khalaf E, Vishwanath A, Efetov D K 2023 Nat. Mater. 22 316Google Scholar

    [152]

    Lau C N, Bockrath M W, Mak K F, Zhang F 2022 Nature 602 41Google Scholar

    [153]

    Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214Google Scholar

    [154]

    Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2022 Nat. Phys. 18 395Google Scholar

    [155]

    Chen D, Lian Z, Huang X, et al. 2022 Nat. Phys. 18 1171Google Scholar

    [156]

    Shi Q, Shih E M, Rhodes D, Kim B, Barmak K, Watanabe K, Taniguchi T, Papić Z, Abanin D A, Hone J, Dean C R 2022 Nat. Nanotechnol. 17 577Google Scholar

    [157]

    Zeng Y, Xia Z, Dery R, Watanabe K, Taniguchi T, Shan J, Mak K F 2023 Nat. Mater. 22 175Google Scholar

    [158]

    Ma L, Nguyen P X, Wang Z, Zeng Y, Watanabe K, Taniguchi T, MacDonald A H, Mak K F, Shan J 2021 Nature 598 585Google Scholar

    [159]

    Peelaers H, Van de Walle C G 2012 Phys. Rev. B 86 241401Google Scholar

    [160]

    Raymond A, Robert J L, Bernard C 1979 J. Phys. C Solid State Phys. 12 2289Google Scholar

    [161]

    Fogler M M, Butov L V, Novoselov K S 2014 Nat. Commun. 5 4555Google Scholar

    [162]

    Wu F C, Xue F, MacDonald A H 2015 Phys. Rev. B 92 165121Google Scholar

    [163]

    Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76Google Scholar

    [164]

    Zhang Y H, Sheng D N, Vishwanath A 2021 Phys. Rev. Lett. 127 247701Google Scholar

    [165]

    Zeng Y, Wei N, MacDonald A H 2022 Phys. Rev. B 106 165105Google Scholar

    [166]

    Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C 2022 arXiv 2207.10764 [cond-mat. str-el]

    [167]

    Bai Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X Y 2022 arXiv 2207.09601 [cond-mat. mes-hall]

  • 图 1  激子绝缘体产生示意图 (a)左, 半导体带隙Eg, 激子束缚能Eb, 当Eb大于Eg时, 单粒子能带结构在电子-空穴吸引作用下表现得不稳定; 右, 半金属有着负的带隙, 黑色虚线表示费米能, 同样在电子-空穴的吸引下能带结构不稳定, 二者都可能自发形成激子并打开一个关联能隙; (b)—(d)一个电子-电子的双层结构在纵向磁场中等价于一个电子-空穴双层结构[18]; (b)电子处于平行的上下两层中的示意图; (c)在磁场中电子的动能量子化到一系列分立的朗道能级, 每个朗道能级包含若干简并的电子圆形轨道, 这里用方格子代表轨道; 当磁场足够强时, 所有电子都集中在最低朗道能级并且是部分填充(图中为1/3填充); (d)在下面一层中进行粒子-空穴转换, 此时原先空的格点等价为空穴占据(图中绿色格点), 原先两层的电子-电子库仑排斥在此变换后等价为两层的电子-空穴库仑吸引, 当两层电子空穴数目一致的时候(各自都半填充最低朗道能级), 最有可能发生激子的玻色爱因斯坦凝聚(图中展示的是电子-空穴不相等的情况)

    Fig. 1.  Schematic for exciton insulator formation: (a) Left, a semiconductor with bandgap Eg and exciton binding energy Eb, when Eb is larger than Eg, the single particle band structure is not stable under electron-hole attraction; right, a semimetal with a negative bandgap, black dashed line indicates the Fermi level. Similarly, under electron-hole attraction, the band structure is not stable. Both will spontaneously form exciton and open a correlation gap. (b)–(d) An electron-electron bilayer system in a strong magnetic field is equivalent to an electron-hole bilayer[18]. (b) Cartoon depiction of two parallel layers of electrons. (c) In a magnetic field the kinetic energy of 2D electrons is quantized into discrete Landau energy levels. Each such Landau level contains a huge number of degenerate orbitals, here depicted schematically as a checkerboard of sites. If the field is strong enough, all electrons reside in the lowest Landau level, and only occupy a fraction (here one-third) of the available sites. (d) A particle-hole transformation applied to the lower electron layer places the emphasis on the unoccupied sites—that is, the holes (colored green) in that layer. This transformation changes the sign of the Coulomb interactions between layers from repulsive to attractive. Exciton BEC is most likely to occur when the number of electrons and holes are equal, that is, when each layer is half-filled (this is not the case in this figure).

    图 2  莫尔平带 (a)在TMD异质结中形成的莫尔晶格[25], 其中A, B, C 三个位置是莫尔格点中的高对称点, am为莫尔周期, 其上下层原子堆叠情况参照右边的放大示意图(此图为转角0°附近); (b)在形成莫尔晶格后, 布里渊区从原来的$ 1/a $(1010 m–1)(a为原子间距)折叠为1/am(108 m–1), 形成迷你布里渊区, 在其边界通过布拉格反射打开能隙, 形成莫尔平带

    Fig. 2.  Moiré flat band: (a) Moiré lattice formed in TMD heterobilayer. A, B, C are three high symmetry points in the moiré unit cell[25], here am is the moiré lattice period. And the zoomed in lattice configuration was shown on the right (this is a zero-angle twist case). (b) After having moiré lattice, the Brillouin zone shrinks from the original 1/a (~1010 m–1) (a is the original distance between neighboring atoms) to 1/am (~108 m–1), forming mini Brillouin zone. This opens a gap at its boundary due to Bragg reflection followed by the emergence of moiré flat band.

    图 3  单层-莫尔结构中的激子绝缘体[153,154] (a)该结构中的粒子-空穴转换示意图; (b)单层WSe2与莫尔异质结在不加电场时的能带相对位置示意图, 其中黑色虚线代表费米能; (c)—(e)莫尔异质结层间激子光致发光强度(c), 激子探测手段中的2s态强度(d), 以及穿透电容(e)随电场和电荷浓度的变化. 其中穿透电容可以清楚看到在区域III (单层与莫尔晶格都同时被掺杂了的区域), 在总的浓度为1的时候, 连续调节电场改变体系激子浓度(浓度范围${v }_{x}$为0—0.7), 体系始终有带隙

    Fig. 3.  Exciton insulator in monolayer-hBN-moiré structure[153,154]: (a) Schematic for particle-hole transformation in this system; (b) band alignment between monolayer WSe2 and moiré heterobilayer without electric field, black dashed line indicates the Fermi level; (c)–(e) photoluminescence intensity from moiré interlayer exciton (c), exciton sensor’s 2s intensity (d) and penetration capacitance (e) as a function of electric field and dope. The penetration capacitance clearly shows in region III, where both monolayer and moiré are doped and when total filling is at 1, the system is always gaped when continuously tune the exciton density (${v}_{x}\sim$0–0.7) by varying the electric field.

    图 4  单层-双层结构中(a)—(c)[155]以及双莫尔结构中(d)—(g)[157]的激子绝缘体 (a)电场调控空穴在两层WSe2中的分布, 电场向上时(上图), 空穴全部分布于靠近莫尔晶格的那层WSe2, 当电场向下时(下图), 空穴可以被转移到最下层WSe2中, 并且与上层中的空位(电子)束缚在一起形成激子; (b)扫描背向栅极电压调控两层空穴比例, 在总的浓度为1的时候出现绝缘态的性质; (c)通过MIM测量到体系在$ v=1 $的确处于绝缘态, 其带隙在120 K消失; (d)双莫尔结构样品示意图, 最上层WSe2用于2s激子探测; (e) WS2-2L WSe2-WS2导带能带排列; (f) 2s激子反射强度随电场E和电子浓度$ v $的变化关系; (g)激子密度波示意图, 在总的电子浓度$ v $= 1/3时, 红(蓝)色点表示上(下)层莫尔晶格中的电子, 激子在晶格中移动时会被限制在1/3的格点中(如图中箭头所示)

    Fig. 4.  Exciton insulator in monolayer TMD-bilayer TMD structure (a)–(c) [155] and in double moiré structure (d)–(g) [157]: (a) Electric field tunes hole distribution in both WSe2 layers, when it points upward (upper picture), holes are all located in the moiré WSe2 layer, when it points downward (lower picture), holes can be transferred to another WSe2 layer. Those holes can bond with vacancies (electron) in the moiré to form excitons. (b) Back-gate dependent reflection spectrum. Insulator behavior emerges at total filling 1. (c) MIM showing the insulator state at $ v=1 $ has a gap equivalent to 120 K. (d) Double moiré sample schematic, the top most WSe2 layer is used for 2s exciton sensing. (e) Conduction band alignment in WS2-2L WSe2-WS2 structure. (f) 2s reflection amplitude as a function of electric field E and electron density $ v $. (g) Exciton density wave schematic. At total electron filling $ v= 1/3 $, the red (blue) dots represent charges in top (bottom) moiré, exciton hops only under the 1/3 lattice (as shown by the black arrow).

    图 5  单层-单层结构中的激子绝缘体[158] (a)样品结构示意图, ${V}_{\rm b}$$ {V}_{\rm g} $分别代表施加的偏压和栅压, $ \varDelta $为额外施加的面外电场(以产生高掺杂的接触区域); (b)能带和化学势相对位置示意图, 其中$ {\mu }_{\rm e} $, $ {\mu }_{\rm h} $, $ {\mu }_{\rm X} $分别代表电子、空穴、激子的化学势, ${E}_{\rm G}$是系统的带隙; (c)静电相位图(忽略层间激子耦合), 其中p, n, i 分别代表空穴、电子掺杂和本征状态; (d), (e) 穿透电容(d)和层间电容(e)随偏压$ {V}_{\rm b} $和栅压$ {V}_{\rm g} $的变化关系; 穿透电容(d)观测到的绝缘区域(红色)与层间电容(e)观测到的电子-空穴对可注入区域(红色)重叠的部分(白色虚线与红色虚线围出的三角区域)指示了激子绝缘体的存在; (f)激子绝缘体相图

    Fig. 5.  Exciton insulator in monolayer-monolayer structure[158]: (a) Sample schematic in which $ {V}_{\rm b} $ and $ {V}_{\rm g} $ represent bias voltage and gate voltage, respectively; (b) band diagram of the device in which $ {\mu }_{\rm e} $, $ {\mu }_{\rm h} $ and $ {\mu }_{\rm X} $ represent chemical potential of electron, hole and exciton, respectively; $ {E}_{\rm G} $ is the band gap; (c) electrostatic phase diagram in which p, n, i represent hole, electron doped and intrinsic layers, respectively; (d), (e) penetration capacitance (d) and interlayer capacitance (e) as a function of bias $ {V}_{\rm b} $ and gate $ {V}_{\rm g} $; the charge insulating region indicated by penetration capacitance (red in (d)) and electron-hole pair injectable region measured by interlayer capacitance (red in (e)) has an overlap, which is the triangle region surrounded by red and white dashes; that indicates the existing of excitonic insulator; (f) thermal-dynamic phase diagram of interlayer excitons in the system.

    图 6  激子电输运实验示意图 (a)库仑拖拽实验; 单层TMD 与莫尔异质结晶格之间有2 nm 的氮化硼中间层, 单层TMD 和莫尔异质结分别处于不同回路, 在单层TMD 中施加电流I1, 测量在莫尔异质结中的拖拽电流I2, 这里莫尔异质结回路没有外加电流源, 激子形成宏观相干态后, I1 = I2, 并且回流实验(b)观测到没有耗散的层内电流 ($ \Delta V=0 $)

    Fig. 6.  Exciton transport experiment: (a) Coulomb drag measurement. Monolayer TMD and moiré structure are separated by a 2 nm hBN and they are in different circuits. A driving current I1 is in the monolayer TMD circuit and the drag current in moiré circuit can be measured, here moiré circuit is not connected with any external source. When exciton superfluidity forms, I1 = I2 and longitudinal voltage drop of counter-flow configuration shown in (b) should be ΔV = 0.

    Baidu
  • [1]

    Mott N F 1961 Philos. Mag. J. Theor. Exp. Appl. Phys. 6 287

    [2]

    Blatt J M, Böer K W, Brandt W 1962 Phys. Rev. 126 1691Google Scholar

    [3]

    Knox R S 1963 Theory of excitons (New York: Academic Press) p100

    [4]

    Jérome D, Rice T M, Kohn W 1967 Phys. Rev. 158 462Google Scholar

    [5]

    娄文凯, 常凯 2022 物理 51 303Google Scholar

    Lou W K, Chang K 2022 Physics 51 303Google Scholar

    [6]

    Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, Nohara M, Takagi H 2009 Phys. Rev. Lett. 103 026402Google Scholar

    [7]

    Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, van Wezel J, Abbamonte P 2017 Science 358 1314Google Scholar

    [8]

    Lin Z, Wang C, Balassis A, Echeverry J P, Vasenko A S, Silkin V M, Chulkov E V, Shi Y, Zhang J, Guo J, Zhu X 2022 Phys. Rev. Lett. 129 187601Google Scholar

    [9]

    Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jäck B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, Fishchenko N, Liu X, Farahi G, Xie F, Xu Y, Watanabe K, Taniguchi T, Bernevig B A, Cava R J, Schoop L M, Yazdani A, Wu S 2022 Nat. Phys. 18 87Google Scholar

    [10]

    Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, Xu X, Ataei S S, Varsano D, Palummo M, Molinari E, Rontani M, Cobden D H 2022 Nat. Phys. 18 94Google Scholar

    [11]

    Bucher B, Steiner P, Wachter P 1991 Phys. Rev. Lett. 67 2717Google Scholar

    [12]

    Du L, Li X, Lou W, Sullivan G, Chang K, Kono J, Du R R 2017 Nat. Commun. 8 1971Google Scholar

    [13]

    Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A, Georges A 2020 Phys. Rev. Lett. 124 197601Google Scholar

    [14]

    Baldini E, Zong A, Choi D, Lee C, Michael M H, Windgaetter L, Mazin I I, Latini S, Azoury D, Lv B, Kogar A, Wang Y, Lu Y, Takayama T, Takagi H, Millis A J, Rubio A, Demler E, Gedik N 2020 arXiv 2007.02909 [cond-mat. str-el]

    [15]

    Suen Y W, Engel L W, Santos M B, Shayegan M, Tsui D C 1992 Phys. Rev. Lett. 68 1379Google Scholar

    [16]

    Spielman I B, Eisenstein J P, Pfeiffer L N, West K W 2000 Phys. Rev. Lett. 84 5808Google Scholar

    [17]

    Kellogg M, Spielman I B, Eisenstein J P, Pfeiffer L N, West K W 2002 Phys. Rev. Lett. 88 126804Google Scholar

    [18]

    Eisenstein J P, MacDonald A H 2004 Nature 432 691Google Scholar

    [19]

    Eisenstein J P 2014 Annu. Rev. Condens. Matter Phys. 5 159Google Scholar

    [20]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [21]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439Google Scholar

    [22]

    Li J I A, Taniguchi T, Watanabe K, Hone J, Dean C R 2017 Nat. Phys. 13 751Google Scholar

    [23]

    Liu X, Watanabe K, Taniguchi T, Halperin B I, Kim P 2017 Nat. Phys. 13 746Google Scholar

    [24]

    Liu X, Li J I A, Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P, Dean C R 2022 Science 375 205Google Scholar

    [25]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [26]

    Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J, Andrei E Y 2010 Nat. Phys. 6 109Google Scholar

    [27]

    Bistritzer R, MacDonald A H 2011 Proc. Natl. Acad. Sci. 108 12233Google Scholar

    [28]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [29]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [30]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [31]

    Chittari B L, Chen G, Zhang Y, Wang F, Jung J 2019 Phys. Rev. Lett. 122 016401Google Scholar

    [32]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal’ko V I, Tartakovskii A I 2019 Nature 567 81Google Scholar

    [33]

    Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76Google Scholar

    [34]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [35]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A, Embley J, Zepeda A, Campbell M, Autry T, Taniguchi T, Watanabe K, Lu N, Banerjee S K, Silverman K L, Kim S, Tutuc E, Yang L, MacDonald A H, Li X 2019 Nature 567 71Google Scholar

    [36]

    Chen G, Jiang L, Wu S, Lyu B, Li H, Chittari B L, Watanabe K, Taniguchi T, Shi Z, Jung J, Zhang Y, Wang F 2019 Nat. Phys. 15 237Google Scholar

    [37]

    Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F, Dean C R 2019 Science 363 1059Google Scholar

    [38]

    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, Kim P 2019 Nat. Mater. 18 448Google Scholar

    [39]

    Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, Ashoori R C 2019 Phys. Rev. Lett. 123 046601Google Scholar

    [40]

    Chen G, Sharpe A L, Gallagher P, Rosen I T, Fox E J, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Jung J, Shi Z, Goldhaber-Gordon D, Zhang Y, Wang F 2019 Nature 572 215Google Scholar

    [41]

    Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, Pasupathy A N 2019 Nature 572 95Google Scholar

    [42]

    Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2019 Nature 572 101Google Scholar

    [43]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2019 Science 365 605Google Scholar

    [44]

    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, Andrei E Y 2019 Nature 573 91Google Scholar

    [45]

    Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [46]

    Polshyn H, Yankowitz M, Chen S, Zhang Y, Watanabe K, Taniguchi T, Dean C R, Young A F 2019 Nat. Phys. 15 1011Google Scholar

    [47]

    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, von Oppen F, Watanabe K, Taniguchi T, Nadj-Perge S 2019 Nat. Phys. 15 1174Google Scholar

    [48]

    Finney N R, Yankowitz M, Muraleetharan L, Watanabe K, Taniguchi T, Dean C R, Hone J 2019 Nat. Nanotechnol. 14 1029Google Scholar

    [49]

    Jin C, Regan E C, Wang D, Iqbal Bakti Utama M, Yang C S, Cain J, Qin Y, Shen Y, Zheng Z, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nat. Phys. 15 1140Google Scholar

    [50]

    Burg G W, Zhu J, Taniguchi T, Watanabe K, MacDonald A H, Tutuc E 2019 Phys. Rev. Lett. 123 197702Google Scholar

    [51]

    Karni O, Barré E, Lau S C, Gillen R, Ma E Y, Kim B, Watanabe K, Taniguchi T, Maultzsch J, Barmak K, Page R H, Heinz T F 2019 Phys. Rev. Lett. 123 247402Google Scholar

    [52]

    Lu X, Tang J, Wallbank J R, Wang S, Shen C, Wu S, Chen P, Yang W, Zhang J, Watanabe K, Taniguchi T, Yang R, Shi D, Efetov D K, Fal’ko V I, Zhang G 2020 Phys. Rev. B 102 045409Google Scholar

    [53]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [54]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [55]

    Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, Wang F 2020 Nature 579 56Google Scholar

    [56]

    Regan E C, Wang D, Jin C, Bakti Utama M I, Gao B, Wei X, Zhao S, Zhao W, Zhang Z, Yumigeta K, Blei M, Carlström J D, Watanabe K, Taniguchi T, Tongay S, Crommie M, Zettl A, Wang F 2020 Nature 579 359Google Scholar

    [57]

    Tang Y, Li L, Li T, Xu Y, Liu S, Barmak K, Watanabe K, Taniguchi T, MacDonald A H, Shan J, Mak K F 2020 Nature 579 353Google Scholar

    [58]

    Shimazaki Y, Schwartz I, Watanabe K, Taniguchi T, Kroner M, Imamoğlu A 2020 Nature 580 472Google Scholar

    [59]

    Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, Zhang G 2020 Nat. Phys. 16 520Google Scholar

    [60]

    Uri A, Grover S, Cao Y, Crosse J A, Bagani K, Rodan-Legrain D, Myasoedov Y, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Zeldov E 2020 Nature 581 47Google Scholar

    [61]

    Wong D, Nuckolls K P, Oh M, Lian B, Xie Y, Jeon S, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 582 198Google Scholar

    [62]

    Zondiner U, Rozen A, Rodan-Legrain D, Cao Y, Queiroz R, Taniguchi T, Watanabe K, Oreg Y, von Oppen F, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2020 Nature 582 203Google Scholar

    [63]

    Arora H S, Polski R, Zhang Y, Thomson A, Choi Y, Kim H, Lin Z, Wilson I Z, Xu X, Chu J H, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2020 Nature 583 379Google Scholar

    [64]

    Cao Y, Rodan-Legrain D, Rubies-Bigorda O, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2020 Nature 583 215Google Scholar

    [65]

    Liu X, Hao Z, Khalaf E, Lee J Y, Ronen Y, Yoo H, Haei Najafabadi D, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2020 Nature 583 221Google Scholar

    [66]

    McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580Google Scholar

    [67]

    Stepanov P, Das I, Lu X, Fahimniya A, Watanabe K, Taniguchi T, Koppens F H L, Lischner J, Levitov L, Efetov D K 2020 Nature 583 375Google Scholar

    [68]

    Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861Google Scholar

    [69]

    Saito Y, Ge J, Watanabe K, Taniguchi T, Young A F 2020 Nat. Phys. 16 926Google Scholar

    [70]

    Bai Y, Zhou L, Wang J, Wu W, McGilly L J, Halbertal D, Lo C F B, Liu F, Ardelean J, Rivera P, Finney N R, Yang X C, Basov D N, Yao W, Xu X, Hone J, Pasupathy A N, Zhu X Y 2020 Nat. Mater. 19 1068Google Scholar

    [71]

    Chu Z, Regan E C, Ma X, Wang D, Xu Z, Utama M I B, Yumigeta K, Blei M, Watanabe K, Taniguchi T, Tongay S, Wang F, Lai K 2020 Phys. Rev. Lett. 125 186803Google Scholar

    [72]

    Xu Y, Liu S, Rhodes D A, Watanabe K, Taniguchi T, Hone J, Elser V, Mak K F, Shan J 2020 Nature 587 214Google Scholar

    [73]

    Zhang Z, Wang Y, Watanabe K, Taniguchi T, Ueno K, Tutuc E, LeRoy B J 2020 Nat. Phys. 16 1093Google Scholar

    [74]

    Zhang L, Zhang Z, Wu F, Wang D, Gogna R, Hou S, Watanabe K, Taniguchi T, Kulkarni K, Kuo T, Forrest S R, Deng H 2020 Nat. Commun. 11 5888Google Scholar

    [75]

    Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, Yazdani A 2020 Nature 588 610Google Scholar

    [76]

    Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H, Young A F 2020 Nature 588 66Google Scholar

    [77]

    Lee K, Utama M I B, Kahn S, Samudrala A, Leconte N, Yang B, Wang S, Watanabe K, Taniguchi T, Altoé M V P, Zhang G, Weber-Bargioni A, Crommie M, Ashby P D, Jung J, Wang F, Zettl A 2020 Sci. Adv. 6 eabd1919Google Scholar

    [78]

    He M, Li Y, Cai J, Liu Y, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Phys. 17 26Google Scholar

    [79]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J, Mak K F, Shan J 2021 Nat. Nanotechnol. 16 52Google Scholar

    [80]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 590 249Google Scholar

    [81]

    Utama M I B, Koch R J, Lee K, Leconte N, Li H, Zhao S, Jiang L, Zhu J, Watanabe K, Taniguchi T, Ashby P D, Weber-Bargioni A, Zettl A, Jozwiak C, Jung J, Rotenberg E, Bostwick A, Wang F 2021 Nat. Phys. 17 184Google Scholar

    [82]

    Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R, Yankowitz M 2021 Nat. Phys. 17 374Google Scholar

    [83]

    Zhang L, Wu F, Hou S, Zhang Z, Chou Y H, Watanabe K, Taniguchi T, Forrest S R, Deng H 2021 Nature 591 61Google Scholar

    [84]

    Hao Z, Zimmerman A M, Ledwith P, Khalaf E, Najafabadi D H, Watanabe K, Taniguchi T, Vishwanath A, Kim P 2021 Science 371 1133Google Scholar

    [85]

    Liu X, Wang Z, Watanabe K, Taniguchi T, Vafek O, Li J I A 2021 Science 371 1261Google Scholar

    [86]

    Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 592 43Google Scholar

    [87]

    Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P, Ilani S 2021 Nature 592 214Google Scholar

    [88]

    Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A, Young A F 2021 Nat. Phys. 17 478Google Scholar

    [89]

    Saito Y, Yang F, Ge J, Liu X, Taniguchi T, Watanabe K, Li J I A, Berg E, Young A F 2021 Nature 592 220Google Scholar

    [90]

    Han T, Yang J, Zhang Q, Wang L, Watanabe K, Taniguchi T, McEuen P L, Ju L 2021 Phys. Rev. Lett. 126 146402Google Scholar

    [91]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [92]

    Li Y, Dietrich S, Forsythe C, Taniguchi T, Watanabe K, Moon P, Dean C R 2021 Nat. Nanotechnol. 16 525Google Scholar

    [93]

    Xu S, Al Ezzi M M, Balakrishnan N, Garcia-Ruiz A, Tsim B, Mullan C, Barrier J, Xin N, Piot B A, Taniguchi T, Watanabe K, Carvalho A, Mishchenko A, Geim A K, Fal’ko V I, Adam S, Neto A H C, Novoselov K S, Shi Y 2021 Nat. Phys. 17 619Google Scholar

    [94]

    Xu Y, Horn C, Zhu J, Tang Y, Ma L, Li L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2021 Nat. Mater. 20 645Google Scholar

    [95]

    Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A, Yazdani A 2021 Nat. Commun. 12 2732Google Scholar

    [96]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, Goldhaber-Gordon D 2021 Nano Lett. 21 4299Google Scholar

    [97]

    Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A, Efetov D K 2021 Nat. Phys. 17 710Google Scholar

    [98]

    Huang X, Wang T, Miao S, Wang C, Li Z, Lian Z, Taniguchi T, Watanabe K, Okamoto S, Xiao D, Shi S F, Cui Y T 2021 Nat. Phys. 17 715Google Scholar

    [99]

    Liu E, Barré E, van Baren J, Wilson M, Taniguchi T, Watanabe K, Cui Y T, Gabor N M, Heinz T F, Chang Y C, Lui C H 2021 Nature 594 46Google Scholar

    [100]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [101]

    Tschirhart C L, Serlin M, Polshyn H, Shragai A, Xia Z, Zhu J, Zhang Y, Watanabe K, Taniguchi T, Huber M E, Young A F 2021 Science 372 1323Google Scholar

    [102]

    Cao Y, Park J M, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nature 595 526Google Scholar

    [103]

    Jin C, Tao Z, Li T, Xu Y, Tang Y, Zhu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Fu L, Shan J, Mak K F 2021 Nat. Mater. 20 940Google Scholar

    [104]

    Li H, Li S, Naik M H, Xie J, Li X, Wang J, Regan E, Wang D, Zhao W, Zhao S, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Wang F, Crommie M F 2021 Nat. Mater. 20 945Google Scholar

    [105]

    Rodan-Legrain D, Cao Y, Park J M, de la Barrera S C, Randeria M T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2021 Nat. Nanotechnol. 16 769Google Scholar

    [106]

    Quan J, Linhart L, Lin M L, Lee D, Zhu J, Wang C Y, Hsu W T, Choi J, Embley J, Young C, Taniguchi T, Watanabe K, Shih C K, Lai K, MacDonald A H, Tan P H, Libisch F, Li X 2021 Nat. Mater. 20 1100Google Scholar

    [107]

    He M, Zhang Y H, Li Y, Fei Z, Watanabe K, Taniguchi T, Xu X, Yankowitz M 2021 Nat. Commun. 12 4727Google Scholar

    [108]

    Ghiotto A, Shih E M, Pereira G S S G, Rhodes D A, Kim B, Zang J, Millis A J, Watanabe K, Taniguchi T, Hone J C, Wang L, Dean C R, Pasupathy A N 2021 Nature 597 345Google Scholar

    [109]

    Li T, Jiang S, Li L, Zhang Y, Kang K, Zhu J, Watanabe K, Taniguchi T, Chowdhury D, Fu L, Shan J, Mak K F 2021 Nature 597 350Google Scholar

    [110]

    Li H, Li S, Regan E C, Wang D, Zhao W, Kahn S, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Crommie M F, Wang F 2021 Nature 597 650Google Scholar

    [111]

    Hesp N C H, Torre I, Rodan-Legrain D, Novelli P, Cao Y, Carr S, Fang S, Stepanov P, Barcons-Ruiz D, Herzig Sheinfux H, Watanabe K, Taniguchi T, Efetov D K, Kaxiras E, Jarillo-Herrero P, Polini M, Koppens F H L 2021 Nat. Phys. 17 1162Google Scholar

    [112]

    Li H, Li S, Naik M H, Xie J, Li X, Regan E, Wang D, Zhao W, Yumigeta K, Blei M, Taniguchi T, Watanabe K, Tongay S, Zettl A, Louie S G, Crommie M F, Wang F 2021 Nat. Phys. 17 1114Google Scholar

    [113]

    Li T, Zhu J, Tang Y, Watanabe K, Taniguchi T, Elser V, Shan J, Mak K F 2021 Nat. Nanotechnol. 16 1068Google Scholar

    [114]

    Zhou H, Xie T, Ghazaryan A, Holder T, Ehrets J R, Spanton E M, Taniguchi T, Watanabe K, Berg E, Serbyn M, Young A F 2021 Nature 598 429Google Scholar

    [115]

    Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434Google Scholar

    [116]

    Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nat. Phys. 17 1210Google Scholar

    [117]

    Wang X, Zhu J, Seyler K L, Rivera P, Zheng H, Wang Y, He M, Taniguchi T, Watanabe K, Yan J, Mandrus D G, Gamelin D R, Yao W, Xu X 2021 Nat. Nanotechnol. 16 1208Google Scholar

    [118]

    Song T, Sun Q C, Anderson E, Wang C, Qian J, Taniguchi T, Watanabe K, McGuire M A, Stöhr R, Xiao D, Cao T, Wrachtrup J, Xu X 2021 Science 374 1140Google Scholar

    [119]

    Choi Y, Kim H, Lewandowski C, Peng Y, Thomson A, Polski R, Zhang Y, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2021 Nat. Phys. 17 1375Google Scholar

    [120]

    Li T, Jiang S, Shen B, Zhang Y, Li L, Tao Z, Devakul T, Watanabe K, Taniguchi T, Fu L, Shan J, Mak K F 2021 Nature 600 641Google Scholar

    [121]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [122]

    Xie Y, Pierce A T, Park J M, Parker D E, Khalaf E, Ledwith P, Cao Y, Lee S H, Chen S, Forrester P R, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, Yacoby A 2021 Nature 600 439Google Scholar

    [123]

    Polshyn H, Zhang Y, Kumar M A, Soejima T, Ledwith P, Watanabe K, Taniguchi T, Vishwanath A, Zaletel M P, Young A F 2022 Nat. Phys. 18 42Google Scholar

    [124]

    Wang Y, Herzog-Arbeitman J, Burg G W, Zhu J, Watanabe K, Taniguchi T, MacDonald A H, Bernevig B A, Tutuc E 2022 Nat. Phys. 18 48Google Scholar

    [125]

    Lin J X, Zhang Y H, Morissette E, Wang Z, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Li J I A 2022 Science 375 437Google Scholar

    [126]

    Xu Y, Ray A, Shao Y T, Jiang S, Lee K, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Muller D A, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 143Google Scholar

    [127]

    Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774Google Scholar

    [128]

    Karni O, Barré E, Pareek V, Georgaras J D, Man M K L, Sahoo C, Bacon D R, Zhu X, Ribeiro H B, O’Beirne A L, Hu J, Al-Mahboob A, Abdelrasoul M M M, Chan N S, Karmakar A, Winchester A J, Kim B, Watanabe K, Taniguchi T, Barmak K, Madéo J, da Jornada F H, Heinz T F, Dani K M 2022 Nature 603 247Google Scholar

    [129]

    Yang J, Chen G, Han T, Zhang Q, Zhang Y H, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Zhang Y, Wang F, Ju L 2022 Science 375 1295Google Scholar

    [130]

    Wang X, Xiao C, Park H, Zhu J, Wang C, Taniguchi T, Watanabe K, Yan J, Xiao D, Gamelin D R, Yao W, Xu X 2022 Nature 604 468Google Scholar

    [131]

    Li Q, Cheng B, Chen M, Xie B, Xie Y, Wang P, Chen F, Liu Z, Watanabe K, Taniguchi T, Liang S J, Wang D, Wang C, Wang Q H, Liu J, Miao F 2022 Nature 609 479Google Scholar

    [132]

    Turkel S, Swann J, Zhu Z, Christos M, Watanabe K, Taniguchi T, Sachdev S, Scheurer M S, Kaxiras E, Dean C R, Pasupathy A N 2022 Science 376 193Google Scholar

    [133]

    Finney J, Sharpe A L, Fox E J, Hsueh C L, Parker D E, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Dean C R, Vishwanath A, Kastner M A, Goldhaber-Gordon D 2022 Proc. Natl. Acad. Sci. 119 e2118482119Google Scholar

    [134]

    Barré E, Karni O, Liu E, O’Beirne A L, Chen X, Ribeiro H B, Yu L, Kim B, Watanabe K, Taniguchi T, Barmak K, Lui C H, Refaely-Abramson S, da Jornada F H, Heinz T F 2022 Science 376 406Google Scholar

    [135]

    Liu X, Zhang N J, Watanabe K, Taniguchi T, Li J I A 2022 Nat. Phys. 18 522Google Scholar

    [136]

    Jaoui A, Das I, Di Battista G, et al. 2022 Nat. Phys. 18 633Google Scholar

    [137]

    Kim H, Choi Y, Lewandowski C, Thomson A, Zhang Y, Polski R, Watanabe K, Taniguchi T, Alicea J, Nadj-Perge S 2022 Nature 606 494Google Scholar

    [138]

    Liu L, Zhang S, Chu Y, Shen C, Huang Y, Yuan Y, Tian J, Tang J, Ji Y, Yang R, Watanabe K, Taniguchi T, Shi D, Liu J, Yang W, Zhang G 2022 Nat. Commun. 13 3292Google Scholar

    [139]

    de la Barrera S C, Aronson S, Zheng Z, Watanabe K, Taniguchi T, Ma Q, Jarillo-Herrero P, Ashoori R 2022 Nat. Phys. 18 771Google Scholar

    [140]

    Zhao W, Kang K, Li L, Tschirhart C, Redekop E, Watanabe K, Taniguchi T, Young A, Shan J, Mak K F 2022 arXiv 2207.02312 [cond-mat. mes-hall]

    [141]

    Tang Y, Gu J, Liu S, Watanabe K, Taniguchi T, Hone J C, Mak K F, Shan J 2022 Nat. Commun. 13 4271Google Scholar

    [142]

    Burg G W, Khalaf E, Wang Y, Watanabe K, Taniguchi T, Tutuc E 2022 Nat. Mater. 21 884Google Scholar

    [143]

    Park J M, Cao Y, Xia L Q, Sun S, Watanabe K, Taniguchi T, Jarillo-Herrero P 2022 Nat. Mater. 21 877Google Scholar

    [144]

    Naik M H, Regan E C, Zhang Z, et al. 2022 Nature 609 52Google Scholar

    [145]

    Xu Y, Kang K, Watanabe K, Taniguchi T, Mak K F, Shan J 2022 Nat. Nanotechnol. 17 934Google Scholar

    [146]

    Lin J X, Siriviboon P, Scammell H D, Liu S, Rhodes D, Watanabe K, Taniguchi T, Hone J, Scheurer M S, Li J I A 2022 Nat. Phys. 18 1221Google Scholar

    [147]

    Zhao W, Shen B, Tao Z, Han Z, Kang K, Watanabe K, Taniguchi T, Mak K F, Shan J 2022 arXiv 2211.00263 [cond-mat. str-el]

    [148]

    Zhang M, Zhao X, Watanabe K, Taniguchi T, Zhu Z, Wu F, Li Y, Xu Y 2022 Phys. Rev. X 12 041015

    [149]

    Susarla S, Naik M H, Blach D D, Zipfel J, Taniguchi T, Watanabe K, Huang L, Ramesh R, da Jornada F H, Louie S G, Ercius P, Raja A 2022 Science 378 1235Google Scholar

    [150]

    Sood A, Haber J B, Carlström J, et al. 2023 Nat. Nanotechnol. 18 29Google Scholar

    [151]

    Shen C, Ledwith P J, Watanabe K, Taniguchi T, Khalaf E, Vishwanath A, Efetov D K 2023 Nat. Mater. 22 316Google Scholar

    [152]

    Lau C N, Bockrath M W, Mak K F, Zhang F 2022 Nature 602 41Google Scholar

    [153]

    Zhang Z, Regan E C, Wang D, et al. 2022 Nat. Phys. 18 1214Google Scholar

    [154]

    Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2022 Nat. Phys. 18 395Google Scholar

    [155]

    Chen D, Lian Z, Huang X, et al. 2022 Nat. Phys. 18 1171Google Scholar

    [156]

    Shi Q, Shih E M, Rhodes D, Kim B, Barmak K, Watanabe K, Taniguchi T, Papić Z, Abanin D A, Hone J, Dean C R 2022 Nat. Nanotechnol. 17 577Google Scholar

    [157]

    Zeng Y, Xia Z, Dery R, Watanabe K, Taniguchi T, Shan J, Mak K F 2023 Nat. Mater. 22 175Google Scholar

    [158]

    Ma L, Nguyen P X, Wang Z, Zeng Y, Watanabe K, Taniguchi T, MacDonald A H, Mak K F, Shan J 2021 Nature 598 585Google Scholar

    [159]

    Peelaers H, Van de Walle C G 2012 Phys. Rev. B 86 241401Google Scholar

    [160]

    Raymond A, Robert J L, Bernard C 1979 J. Phys. C Solid State Phys. 12 2289Google Scholar

    [161]

    Fogler M M, Butov L V, Novoselov K S 2014 Nat. Commun. 5 4555Google Scholar

    [162]

    Wu F C, Xue F, MacDonald A H 2015 Phys. Rev. B 92 165121Google Scholar

    [163]

    Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J, Mak K F 2019 Nature 574 76Google Scholar

    [164]

    Zhang Y H, Sheng D N, Vishwanath A 2021 Phys. Rev. Lett. 127 247701Google Scholar

    [165]

    Zeng Y, Wei N, MacDonald A H 2022 Phys. Rev. B 106 165105Google Scholar

    [166]

    Xiong R, Nie J H, Brantly S L, Hays P, Sailus R, Watanabe K, Taniguchi T, Tongay S, Jin C 2022 arXiv 2207.10764 [cond-mat. str-el]

    [167]

    Bai Y, Liu S, Guo Y, Pack J, Wang J, Dean C R, Hone J, Zhu X Y 2022 arXiv 2207.09601 [cond-mat. mes-hall]

  • [1] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象.  , 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [2] 刘海洋, 范晓跃, 范豪杰, 李阳阳, 唐天鸿, 王刚. 等离子体轰击单层WS2引入缺陷态对束缚激子光学性质的影响.  , 2024, 73(13): 137802. doi: 10.7498/aps.73.20240475
    [3] 汤衍浩. 转角半导体过渡金属硫族化物莫尔超晶格中的新奇物态.  , 2023, 72(2): 027802. doi: 10.7498/aps.72.20222080
    [4] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应.  , 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] 二维转角莫尔超晶格专题编者按.  , 2023, 72(6): 060101. doi: 10.7498/aps.72.060101
    [6] 赵罡, 梁汉普, 段益峰. 二维X-AlN (X = C, Si, TC) 半导体的可见光调控与反常热输运.  , 2023, 72(9): 096301. doi: 10.7498/aps.72.20230116
    [7] 许丽, 陈思霖, 杨雪滢, 张晓斐. 周期莫尔晶格中里德伯缀饰玻色气体的基态结构.  , 2023, 72(10): 100307. doi: 10.7498/aps.72.20222292
    [8] 黄月蕾, 单寅飞, 杜灵杰, 杜瑞瑞. 拓扑激子绝缘体的实验进展.  , 2023, 72(17): 177101. doi: 10.7498/aps.72.20230634
    [9] 郭瑞平, 俞弘毅. 二维半导体莫尔超晶格中随位置与动量变化的层间耦合.  , 2023, 72(2): 027302. doi: 10.7498/aps.72.20222046
    [10] 胡倩颖, 许杨. 二维半导体材料中激子对介电屏蔽效应的探测及其应用.  , 2022, 71(12): 127102. doi: 10.7498/aps.71.20220054
    [11] 李听昕. 二维范德瓦耳斯半导体莫尔超晶格实验研究进展.  , 2022, 71(12): 127309. doi: 10.7498/aps.71.20220347
    [12] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质.  , 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [13] 王仲锐, 姜宇航. 转角二维量子材料中平带相关的新奇电子态物性.  , 2022, 71(12): 127202. doi: 10.7498/aps.71.20220064
    [14] 张若寒, 任慧莹, 何林. 二维材料平带的实现及其新奇量子物态.  , 2022, 71(12): 127302. doi: 10.7498/aps.71.20220225
    [15] 夏世强, 唐莉勤, 夏士齐, 马继娜, 燕文超, 宋道红, 胡毅, 许京军, 陈志刚. 平带光子微结构中的新颖现象:从模式局域到实空间拓扑.  , 2020, 69(15): 154207. doi: 10.7498/aps.69.20200384
    [16] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究.  , 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [17] 高艺璇, 张礼智, 张余洋, 杜世萱. 二维有机拓扑绝缘体的研究进展.  , 2018, 67(23): 238101. doi: 10.7498/aps.67.20181711
    [18] 胡家光, 徐文, 肖宜明, 张丫丫. 晶格中心插入体的对称性及取向对二维声子晶体带隙的影响.  , 2012, 61(23): 234302. doi: 10.7498/aps.61.234302
    [19] 朱 博, 桂永胜, 周文政, 商丽燕, 仇志军, 郭少令, 张福甲, 褚君浩. 窄禁带稀磁半导体二维电子气的磁阻振荡研究.  , 2006, 55(6): 2955-2960. doi: 10.7498/aps.55.2955
    [20] 朱 博, 桂永胜, 仇志军, 周文政, 姚 炜, 郭少令, 褚君浩, 张福甲. 窄禁带稀磁半导体二维电子气的拍频振荡.  , 2006, 55(2): 786-790. doi: 10.7498/aps.55.786
计量
  • 文章访问数:  7348
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-16
  • 修回日期:  2023-02-09
  • 上网日期:  2023-03-07
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map