搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

La基非晶合金β弛豫行为: 退火和加载应变的影响

孟绍怡 郝奇 吕国建 乔吉超

引用本文:
Citation:

La基非晶合金β弛豫行为: 退火和加载应变的影响

孟绍怡, 郝奇, 吕国建, 乔吉超

The β relaxation process of La-based amorphous alloy: Effect of annealing and strain amplitude

Meng Shao-Yi, Hao Qi, Lyu Guo-Jian, Qiao Ji-Chao
PDF
HTML
导出引用
  • β弛豫行为是理解非晶合金扩散、塑性变形和玻璃转变行为的重要切入口. 本研究以具有显著β弛豫行为的(La0.6Ce0.4)65Al10Co25非晶合金为研究载体, 利用动态力学分析仪, 研究了加载频率、退火以及加载应变等因素对非晶合金β弛豫行为的影响. 结果表明, 随着加载频率的升高, 非晶合金β弛豫峰向高温段移动. 低于玻璃转变温度退火导致非晶合金β弛豫峰内耗值降低, 非晶合金“缺陷”浓度降低, 玻璃体系向更稳定状态迁移. 随加载应变幅值增大, 非晶合金β弛豫强度增大. 本研究为进一步厘清非晶合金β弛豫起源提供新思路.
    The dynamic relaxation process of amorphous alloys is an important issue to understand the diffusion behavior, plastic deformation as well as glass transition phenomenon. In the current research, (La0.6Ce0.4)65Al10Co25 amorphous alloy with a pronounced β relaxation process was selected as a model system to study the dynamic mechanical relaxation processes. Influence of driving frequency, physical aging and applied strain amplitude on the β relaxation of the La-based metallic glass was probed process using dynamic mechanical analysis. The experimental results demonstrated that the peak of the β relaxation process shifts to high temperature by increasing the driving frequency. Physical aging below the glass transition temperature induces a decrease of the intensity of the β relaxation process. The “defects” of amorphous alloy decreases during the physical aging process, which is ascribed to the glassy system shifts to more stable state induced by physical aging treatment. In parallel, the intensity of the β relaxation process of the amorphous alloy increases by increasing strain amplitude. The research sheds new light on further understanding the physical origin of β relaxation process of the amorphous alloy.
      通信作者: 乔吉超, qjczy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51971178, 52271153)和陕西省杰出青年基金(批准号: 2021JC-12).
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51971178, 52271153), and the Outstanding Youth Found of Shaanxi Province, China (Grant No. 2021JC-12 ).
    [1]

    Demetriou M D, Launey M E, Garrett G, et al. 2011 Nat. Mater. 10 123Google Scholar

    [2]

    Hufnagel T C, Schuh C A, Falk M L 2016 Acta Mater. 109 375Google Scholar

    [3]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [4]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501Google Scholar

    [5]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [6]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [7]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [8]

    Wang W H 2012 Nat. Mater. 11 275Google Scholar

    [9]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [10]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [11]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117

    Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52 117

    [12]

    Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73Google Scholar

    [13]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [14]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [15]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [16]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [17]

    王峥, 汪卫华 2017 66 176105Google Scholar

    Wang Z, Wang W H 2017 Acta. Phys. Sin. 66 176105Google Scholar

    [18]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [19]

    Duan Y J, Zhang L T, Qiao J C, et al. 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [20]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [21]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [22]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [23]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [24]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar

    [25]

    汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar

    Wang W H 2014 Sci. China Phys. Mech. Astr. 44 396Google Scholar

    [26]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385Google Scholar

    [27]

    Qiao J, Wang Q, Pelletier J, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [28]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [29]

    Wang J, Zhang X, Jiang L, Qiao J 2019 Prog. Polym. Sci. 98 101160Google Scholar

    [30]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [31]

    胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115

    Hu L N, Zhang C Z, Yue Y Z, Bian Y F 2010 Sci. Bull. 55 115

    [32]

    Wang X D, Ruta B, Xiong L H, et al. 2015 Acta Mater. 99 290Google Scholar

    [33]

    Li N, Xu X, Zheng Z, Liu L 2014 Acta Mater. 65 400Google Scholar

    [34]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [35]

    Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [36]

    Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar

    [37]

    Menard K P 2015 Dynamic Mechanical Analysis (3rd Ed.) (Place: Published: Crc Press)

    [38]

    Zhao Z F, Wen P, Wang W H, Shek C H 2006 Appl. Phys. Lett. 89 071920Google Scholar

    [39]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [40]

    Yu H B, Samwer K 2014 Phys. Rev. B 90 144201Google Scholar

    [41]

    Goldstein M 2011 J. Non-Cryst. Solids 357 249Google Scholar

    [42]

    Ke H B, Zeng J F, Liu C T, Yang Y 2014 Mater. Sci. Technol. 30 560Google Scholar

    [43]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [44]

    Perez J 1990 Solid State Ionics 39 69Google Scholar

    [45]

    Cavaille J Y, Perez J, Johari G P 1989 Phys. Rev. B 39 2411

    [46]

    Ngai K L, Capaccioli S 2004 Phys. Rev. E 69 031501Google Scholar

    [47]

    Lunkenheimer P, Wehn R, Schneider U, Loidl A 2005 Phys. Rev. Lett. 95 055702Google Scholar

    [48]

    Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar

    [49]

    Qiao J, Pelletier J-M, Casalini R 2013 J. Phys. Chem. B 117 13658Google Scholar

    [50]

    Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi 207 2693Google Scholar

    [51]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [52]

    Hiki Y, Tanahashi M, Takeuchi S 2008 J. Non-Cryst. Solids 354 1780Google Scholar

    [53]

    Angell C A 1988 J. Non-Cryst. Solids 102 205Google Scholar

    [54]

    郝奇, 乔吉超, Jean-Marc Pelletier 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [55]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Mat. 23 142202Google Scholar

    [56]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238Google Scholar

    [57]

    Evenson Z, Naleway S E, Wei S, Gross O, Kruzic J J, Gallino I, Possart W, Stommel M, Busch R 2014 Phys. Rev. B 89 174204Google Scholar

    [58]

    Aji D P B, Johari G P 2015 J. Chem. Phys. 142 214501Google Scholar

    [59]

    Johari G P 1976 Ann. Ny. Acad. Sci. 279 117Google Scholar

    [60]

    Johari G P 2002 J. Non-Cryst. Solids 307-310 317

    [61]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372Google Scholar

    [62]

    Johari G P, Goldstein M 1971 J. Chem. Phys. 55 4245Google Scholar

    [63]

    Perez J 1994 J. Food Eng. 22 89Google Scholar

    [64]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [65]

    Qiao J, Pelletier J-M, Esnouf C, Liu Y, Kato H 2014 J. Alloy. Compd. 607 139Google Scholar

    [66]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [67]

    Sun Y, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar

  • 图 1  (a) (La0.6Ce0.4)65Al10Co25非晶合金X射线衍射图谱; (b) (La0.6Ce0.4)65Al10Co25非晶合金DSC曲线

    Fig. 1.  (a) XRD pattern of (La0.6Ce0.4)65Al10Co25 amorphous alloy; (b) DSC curve of (La0.6Ce0.4)65Al10Co25 amorphous alloy.

    图 2  (a) (La0.6Ce0.4)65Al10Co25非晶合金归一化储能模量${E'}/{{E}}_{\text{u}}$和损耗模量${E''}/{{E}}_{\text{u}}$随温度的演化(升温速率: 3 K/min, 加载频率: 0.7 Hz); (b) (La0.6Ce0.4)65Al10Co25非晶合金归一化损耗模量${E''}/{{E}}_{\text{u}}$在不同加载频率随温度的演化 (升温速率为3 K/min). 插图是β弛豫峰温与加载频率的关系, 实线为Arrhenius方程拟合

    Fig. 2.  (a) Temperature dependence of the normalized storage modulus ${E'}/{{E}}_{\text{u}}$ and loss modulus ${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy (heating rate: 3 K/min , driving frequency: 0.7 Hz); (b) temperature dependence of the normalized loss modulus ${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy with different frequency. Inset shows the frequency versus peak temperature of the β relaxation, the solid line is the Arrhenius equation fit.

    图 3  (a) 不同温度下(La0.6Ce0.4)65Al10Co25非晶合金损耗模量${E''}/{{E}}_{\text{u}}$随加载频率演化; (b) (La0.6Ce0.4)65Al10Co25非晶合金等温和连续加热条件下β弛豫峰温与频率的关系, 实线为Arrhenius方程拟合

    Fig. 3.  (a) Frequency dependence of the normalized loss modulus ${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy with different temperature; (b) the frequency versus peak temperature of the β relaxation with different states (isochronal mode and frequency sweep mode), the solid line is the Arrhenius equation fit.

    图 4  (a) (La0.6Ce0.4)65Al10Co25非晶合金等温原位退火过程储能模量${E'}/{{E}}_{\text{u}}$和内耗$ \tan\delta $随退火时间演化(退火温度为403 K, 加载频率为1 Hz, 实线为KWW拟合); (b) (La0.6Ce0.4)65Al10Co25非晶合金在铸态和退火态(退火样品的退火温度为403 K, 退火时间为10 h)储能模量和损耗模量随温度演化过程(升温速率: 3 K/min, 加载频率: 1 Hz)

    Fig. 4.  (a) Time dependence of the loss factor $ \tan\delta $ and normalized storage modulus ${E'}/{{E}}_{\text{u}}$ of (La0.6Ce0.4)65Al10Co25 amorphous alloy, annealing temperature is 403 K, driving frequency is 1 Hz, the solid line is the best fitting by the KWW equation); (b) annealing temperature is 403 K, annealing time is 10 h, temperature dependence of the normalized storage modulus ${E'}/{{E}}_{\text{u}}$ and loss modulus ${E''}/{{E}}_{\text{u}}$ of (La0.6Ce0.4)65Al10Co25 amorphous alloy with different states (as-cast and annealed state, heating rate: 3 K/min driving frequency: 1 Hz).

    图 5  退火与β弛豫在微观结构角度的关系示意图

    Fig. 5.  Schematic diagram of the relationship between annealing and β relaxation from the microstructural perspective.

    图 6  (La0.6Ce0.4)65Al10Co25非晶合金铸态和退火态Arrhenius方程拟合结果

    Fig. 6.  The frequency versus peak temperature of the β relaxation process with different states (as-cast and annealed states), the solid line is the Arrhenius equation fit.

    图 7  不同应变下(La0.6Ce0.4)65Al10Co25非晶合金归一化损耗模量${E''}/{{E}}_{\text{u}}$随温度演化 (升温速率为3 K/min)

    Fig. 7.  Temperature dependence of the normalized loss modulus ${E''}/{{E}}_{\text{u}}$ for (La0.6Ce0.4)65Al10Co25 amorphous alloy with different strain (heating rate: 3 K/min).

    图 8  不同应变下(La0.6Ce0.4)65Al10Co25非晶合金的激活能线性拟合结果

    Fig. 8.  Results of linear fitting of the activation energy of (La0.6Ce0.4)65Al10Co25 amorphous alloys with different strain

    图 9  (La0.6Ce0.4)65Al10Co25非晶合金激活能随应变演化示意图

    Fig. 9.  Strain dependence of activation energy for (La0.6Ce0.4)65Al10Co25 amorphous alloy.

    Baidu
  • [1]

    Demetriou M D, Launey M E, Garrett G, et al. 2011 Nat. Mater. 10 123Google Scholar

    [2]

    Hufnagel T C, Schuh C A, Falk M L 2016 Acta Mater. 109 375Google Scholar

    [3]

    Inoue A 2000 Acta Mater. 48 279Google Scholar

    [4]

    Johnson W, Samwer K 2005 Phys. Rev. Lett. 95 195501Google Scholar

    [5]

    Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A, Greer A L 2015 Nature 524 200Google Scholar

    [6]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar

    [7]

    Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar

    [8]

    Wang W H 2012 Nat. Mater. 11 275Google Scholar

    [9]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [10]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [11]

    乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117

    Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, Tao K 2022 Adv. Mech. 52 117

    [12]

    Huang B, Zhu Z G, Ge T P, Bai H Y, Sun B A, Yang Y, Liu C T, Wang W H 2016 Acta Mater. 110 73Google Scholar

    [13]

    Ichitsubo T, Matsubara E, Yamamoto T, Chen H, Nishiyama N, Saida J, Anazawa K 2005 Phys. Rev. Lett. 95 245501Google Scholar

    [14]

    Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M W 2011 Phys. Rev. Lett. 106 125504Google Scholar

    [15]

    Wang W H, Yang Y, Nieh T G, Liu C T 2015 Intermetallics 67 81Google Scholar

    [16]

    Ye J C, Lu J, Liu C T, Wang Q, Yang Y 2010 Nat. Mater. 9 619Google Scholar

    [17]

    王峥, 汪卫华 2017 66 176105Google Scholar

    Wang Z, Wang W H 2017 Acta. Phys. Sin. 66 176105Google Scholar

    [18]

    Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z, Bai H Y 2022 Nat. Mater. 21 1240Google Scholar

    [19]

    Duan Y J, Zhang L T, Qiao J C, et al. 2022 Phys. Rev. Lett. 129 175501Google Scholar

    [20]

    Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar

    [21]

    Wagner H, Bedorf D, Kuechemann S, Schwabe M, Zhang B, Arnold W, Samwer K 2011 Nat. Mater. 10 439Google Scholar

    [22]

    Dmowski W, Iwashita T, Chuang C P, Almer J, Egami T 2010 Phys. Rev. Lett. 105 205502Google Scholar

    [23]

    Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [24]

    Wang Z, Sun B A, Bai H Y, Wang W H 2014 Nat. Commun. 5 5823Google Scholar

    [25]

    汪卫华 2014 中国科学: 物理学 力学 天文学 44 396Google Scholar

    Wang W H 2014 Sci. China Phys. Mech. Astr. 44 396Google Scholar

    [26]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385Google Scholar

    [27]

    Qiao J, Wang Q, Pelletier J, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [28]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [29]

    Wang J, Zhang X, Jiang L, Qiao J 2019 Prog. Polym. Sci. 98 101160Google Scholar

    [30]

    Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 016402Google Scholar

    [31]

    胡丽娜, 张春芝, 岳远征, 边秀房 2010 科学通报 55 115

    Hu L N, Zhang C Z, Yue Y Z, Bian Y F 2010 Sci. Bull. 55 115

    [32]

    Wang X D, Ruta B, Xiong L H, et al. 2015 Acta Mater. 99 290Google Scholar

    [33]

    Li N, Xu X, Zheng Z, Liu L 2014 Acta Mater. 65 400Google Scholar

    [34]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [35]

    Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar

    [36]

    Li R, Pang S, Ma C, Zhang T 2007 Acta Mater. 55 3719Google Scholar

    [37]

    Menard K P 2015 Dynamic Mechanical Analysis (3rd Ed.) (Place: Published: Crc Press)

    [38]

    Zhao Z F, Wen P, Wang W H, Shek C H 2006 Appl. Phys. Lett. 89 071920Google Scholar

    [39]

    Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J, Yang Y 2017 Mater. Today 20 293Google Scholar

    [40]

    Yu H B, Samwer K 2014 Phys. Rev. B 90 144201Google Scholar

    [41]

    Goldstein M 2011 J. Non-Cryst. Solids 357 249Google Scholar

    [42]

    Ke H B, Zeng J F, Liu C T, Yang Y 2014 Mater. Sci. Technol. 30 560Google Scholar

    [43]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260

    [44]

    Perez J 1990 Solid State Ionics 39 69Google Scholar

    [45]

    Cavaille J Y, Perez J, Johari G P 1989 Phys. Rev. B 39 2411

    [46]

    Ngai K L, Capaccioli S 2004 Phys. Rev. E 69 031501Google Scholar

    [47]

    Lunkenheimer P, Wehn R, Schneider U, Loidl A 2005 Phys. Rev. Lett. 95 055702Google Scholar

    [48]

    Zhao Y, Shang B, Zhang B, Tong X, Ke H, Bai H, Wang W H 2022 Sci. Adv. 8 eabn3623Google Scholar

    [49]

    Qiao J, Pelletier J-M, Casalini R 2013 J. Phys. Chem. B 117 13658Google Scholar

    [50]

    Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi 207 2693Google Scholar

    [51]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [52]

    Hiki Y, Tanahashi M, Takeuchi S 2008 J. Non-Cryst. Solids 354 1780Google Scholar

    [53]

    Angell C A 1988 J. Non-Cryst. Solids 102 205Google Scholar

    [54]

    郝奇, 乔吉超, Jean-Marc Pelletier 2020 力学学报 52 360Google Scholar

    Hao Q, Qiao J C, Pelletier J M 2020 Acta Mech. Sin. 52 360Google Scholar

    [55]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys. Condens. Mat. 23 142202Google Scholar

    [56]

    Liu Y H, Fujita T, Aji D P B, Matsuura M, Chen M W 2014 Nat. Commun. 5 3238Google Scholar

    [57]

    Evenson Z, Naleway S E, Wei S, Gross O, Kruzic J J, Gallino I, Possart W, Stommel M, Busch R 2014 Phys. Rev. B 89 174204Google Scholar

    [58]

    Aji D P B, Johari G P 2015 J. Chem. Phys. 142 214501Google Scholar

    [59]

    Johari G P 1976 Ann. Ny. Acad. Sci. 279 117Google Scholar

    [60]

    Johari G P 2002 J. Non-Cryst. Solids 307-310 317

    [61]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372Google Scholar

    [62]

    Johari G P, Goldstein M 1971 J. Chem. Phys. 55 4245Google Scholar

    [63]

    Perez J 1994 J. Food Eng. 22 89Google Scholar

    [64]

    Wang Z, Wang W H 2019 Natl. Sci. Rev. 6 304Google Scholar

    [65]

    Qiao J, Pelletier J-M, Esnouf C, Liu Y, Kato H 2014 J. Alloy. Compd. 607 139Google Scholar

    [66]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [67]

    Sun Y, Concustell A, Greer A L 2016 Nat. Rev. Mater. 1 16039Google Scholar

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为.  , 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 张剑, 郝奇, 张浪渟, 乔吉超. 不同力学激励形式探索La基非晶合金微观结构非均匀性.  , 2024, 73(4): 046101. doi: 10.7498/aps.73.20231421
    [3] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [4] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛.  , 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [6] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学.  , 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [7] 平志海, 钟鸣, 龙志林. 基于逾渗理论的非晶合金屈服行为研究.  , 2017, 66(18): 186101. doi: 10.7498/aps.66.186101
    [8] 柳延辉. 非晶合金的高通量制备与表征.  , 2017, 66(17): 176106. doi: 10.7498/aps.66.176106
    [9] 陈娜, 张盈祺, 姚可夫. 源于非晶合金的透明磁性半导体.  , 2017, 66(17): 176113. doi: 10.7498/aps.66.176113
    [10] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状.  , 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [11] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [12] 孙星, 默广, 赵林志, 戴兰宏, 吴忠华, 蒋敏强. 小角X射线散射表征非晶合金纳米尺度结构非均匀.  , 2017, 66(17): 176109. doi: 10.7498/aps.66.176109
    [13] 王峥, 汪卫华. 非晶合金中的流变单元.  , 2017, 66(17): 176103. doi: 10.7498/aps.66.176103
    [14] 卞西磊, 王刚. 非晶合金的离子辐照效应.  , 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [15] 管鹏飞, 王兵, 吴义成, 张珊, 尚宝双, 胡远超, 苏锐, 刘琪. 不均匀性:非晶合金的灵魂.  , 2017, 66(17): 176112. doi: 10.7498/aps.66.176112
    [16] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究.  , 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [17] 蒋爱华, 肖剑荣, 王德安. 退火对含氮氟非晶碳膜结构及光学带隙的影响.  , 2008, 57(9): 6013-6017. doi: 10.7498/aps.57.6013
    [18] 闫志杰, 李金富, 周尧和, 仵彦卿. 压痕塑性变形诱导非晶合金的晶化.  , 2007, 56(2): 999-1003. doi: 10.7498/aps.56.999
    [19] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [20] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , 2005, 54(8): 3862-3866. doi: 10.7498/aps.54.3862
计量
  • 文章访问数:  3847
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-15
  • 修回日期:  2023-01-17
  • 上网日期:  2023-02-04
  • 刊出日期:  2023-04-05

/

返回文章
返回
Baidu
map