搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空核爆炸能量在大气层中的沉积规律

彭国良 张俊杰 王仲琦 任泽平 谢海燕 杜太焦

引用本文:
Citation:

高空核爆炸能量在大气层中的沉积规律

彭国良, 张俊杰, 王仲琦, 任泽平, 谢海燕, 杜太焦

High-altitude nuclear explosion energy accumulation law in atmosphere

Peng Guo-Liang, Zhang Jun-Jie, Wang Zhong-Qi, Ren Ze-Ping, Xie Hai-Yan, Du Tai-Jiao
PDF
HTML
导出引用
  • 建立了高空核爆炸X射线辐射能和碎片动能在大气层中沉积的计算模型, 利用该模型模拟了美国和苏联的4次大威力高空核爆炸试验(Checkmate, Starfish, K3, K4)的能量沉积情况, 分析了碎片动能在海拔100—200 km的沉积规律. 计算结果表明, 与X射线沉积区相比, 碎片动能沉积区范围较小, 能量密度较大; 碎片动能沉积在较短时间内(约0.5 s)完成, 在爆心附近和海拔115 km附近存在两个吸收峰; 动能沉积区在水平截面大体上为椭圆形, 爆炸纬度越高, 椭圆偏心率越小, 水平截面积随海拔高度的增加而增大, 随爆高的增大而减小; 距爆点较远、远离磁泡时, 动能沉积峰值点在穿过爆心的地磁场磁力线附近; 距爆点较近、磁泡内部的动能沉积峰值点在爆心投影点附近.
    An accumulation model of X-ray and debris in a high altitude nuclear explosion is built in this work. Using the established model, we simulate the energy accumulations of four large scale experiments (i.e. the Checkmate, Starfish, K3 and K4) conducted by the United States and the Soviet Union. The dynamics of the kinetic accumulation at 100–200 km altitude is analyzed. Our simulation results show that the kinetic patch spreads a relatively small spatial region and has a large energy density compared with the X-ray patch. The accumulation of the debris ions can be finished within around 0.5 s, and two absorption peaks (hence two kinetic patches) can be observed at an altitude of about 115 km and the burst point. The shape of the kinetic region projected onto the horizontal plane is roughly elliptical, the eccentricity will be smaller at higher latitudes, and the area will be larger at higher altitudes. Away from the bursting point, the maximum energy density of the kinetic patch is near the magnetic field line that crosses the bursting point. Within the magnetic bubble, the maximum energy density of the kinetic patch occurs near the bursting point.
      通信作者: 彭国良, pgl02@163.com
      Corresponding author: Peng Guo-Liang, pgl02@163.com
    [1]

    Dyal, P. 2006 J. Geophys. Res. 111 A12211Google Scholar

    [2]

    Gilbert J, Kappenman J, Radasky W, Savage E 2010 Meta-R-321

    [3]

    Keith S, Earl W 2019 DTRA-TR-19-41

    [4]

    Tesche F M, Barnes P R, Sakis A P 1992 DE92-010365

    [5]

    欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋 2012 61 242801Google Scholar

    Ouyang J M, Ma Y Y, Shao F Q, Zou D B, Liu J X 2012 Acta Phys. Sin. 61 242801Google Scholar

    [6]

    陶应龙 2010 博士学位论文 (北京: 清华大学)

    Tao Y L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [7]

    杨斌, 牛胜利, 朱金辉, 黄流兴 2012 61 202801Google Scholar

    Yang B, Niu S L, Zhu J H, Huang L X 2012 Acta Phys. Sin. 61 202801Google Scholar

    [8]

    彭国良, 张俊杰 2021 70 180703Google Scholar

    Peng G Lg, Zhang J J 2021 Acta Phys. Sin. 70 180703Google Scholar

    [9]

    Peng G L, Zhang J J, Chen J N 2021 Phys. Fluids 33 076602Google Scholar

    [10]

    Winske D 1991 AD-A243198

    [11]

    Thomas V A, Brecht S H 1986 Phys. Fluid 29 2444Google Scholar

    [12]

    Brecht S H, Thomas V A 1988 Comput. Phys. Commun. 48 135Google Scholar

    [13]

    Gladd N T, Brecht S H 1995 DNA-TR-94-161

    [14]

    U. S. Standard Atmosphere 1976 ADA035728

    [15]

    王建国, 牛胜利, 张殿辉 2010 高空核爆炸效应参数手册 (北京: 原子能出版) 第35页

    Wang J G, Niu S L, Zhang D H 2010 Parameter Handbook of High Attitude Nuclear Detonation Effects (Beijing: Atomic Energy Press) p35 (in Chinese)

    [16]

    Douglas S H 1982 J. Comput. Phys. 47 452462

    [17]

    Gargaté L, Bingham R, Fonseca R A, Silva L O 2007 Comput. Phys. Commun. 176 419Google Scholar

    [18]

    Lipatov A S 2002 The Hybrid Multiscale Simulation Technology (Berlin: Springer)

    [19]

    Holland D H, Kaufman A M, O’Dell A A 1977 DNA-4501 F

    [20]

    Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (Emp) Attack 2017 Vol. II: Recommended E3 HEMP Heave Electric Field Waveform for the Critical Infrastructures

  • 图 1  大气压随海拔高度的变化

    Fig. 1.  Atmosphere pressure vs. altitude.

    图 2  $ \lg ({\eta _{\text{X}}}) $等值线图 (a) Checkmate; (b) K4; (c) K3; (d) Starfish

    Fig. 2.  Contour of $ \lg ({\eta _{\text{X}}}) $: (a) Checkmate; (b) K4; (c) K3; (d) Starfish.

    图 3  碎片动能沉积与X射线能量沉积的比值$ {\eta _{{\text{DX}}}} $等值线云图 (a) Checkmate; (b) K4; (c) K3; (d) Starfish

    Fig. 3.  Contour of energy ratio $ {\eta _{{\text{DX}}}} $ of the debris and X-ray: (a) Checkmate; (b) K4; (c) K3; (d) Starfish.

    图 4  海拔高度115 km归一化碎片动能沉积线密度$ {\delta _{\text{D}}} $随时间的变化

    Fig. 4.  Time variation of the normalized debris kinetic energy line density $ {\delta _{\text{D}}} $ at altitude 115 km.

    图 5  爆后1 s归一化碎片动能沉积线密度$ {\delta _{\text{D}}} $随海拔高度的变化

    Fig. 5.  Altitude variation of the normalized line debris kinetic energy density $ {\delta _{\text{D}}} $ at 1 s after detonation.

    图 6  不同海拔的归一化碎片动能沉积云图, 图中, *为过爆点的背景地磁场磁力线在面内的位置, +为动能沉积密度最大的位置 (a) Checkmate, altitude = 105 km ; (b) Checkmate, altitude = 115 km; (c) Checkmate, 海拔高度为125 km; (d) Checkmate, 海拔高度为145 km; (e) K4, 海拔高度为105 km; (f) K4, 海拔高度为115 km; (g) K4, 海拔高度为125 km; (h) K4, 海拔高度为145 km; (i) K3, 海拔高度为105 km; (j) K3, 海拔高度为115 km; (k) K3, 海拔高度为125 km; (l) K3, 海拔高度为145 km; (m) Starfish, 海拔高度为105 km; (n) Starfish, 海拔高度为115 km; (o) Starfish, 海拔高度为125 km; (p) Starfish, 海拔高度为145 km

    Fig. 6.  Normalized debris energy accumulation at various altitudes, where, “*” denotes the magnetic field line which crosses the burst point, and “+” denotes the peak of the accumulated kinetic energy density: (a) Checkmate, altitude = 105 km; (b) Checkmate, altitude = 115 km; (c) Checkmate, altitude = 125 km; (d) Checkmate, altitude = 145 km; (e) K4, altitude = 105 km; (f) K4, altitude = 115 km; (g) K4, altitude = 125 km; (h) K4, altitude = 145 km; (i) K3, altitude = 105 km; (j) K3, altitude = 115 km; (k) K3, altitude = 125 km; (l) K3, altitude = 145 km; (m) Starfish, altitude = 105 km; (n) Starfish, altitude = 115 km; (o) Starfish, altitude = 125 km; (p) Starfish, altitude = 145 km.

    表 1  高空核爆实验参数

    Table 1.  High-altitude nuclear tests parameters.

    爆高/km当量/kt维度/(°)质量/kg
    Checkmate14741017440
    Starfish4001400171500
    K330030047320
    K415030047.6320
    下载: 导出CSV
    Baidu
  • [1]

    Dyal, P. 2006 J. Geophys. Res. 111 A12211Google Scholar

    [2]

    Gilbert J, Kappenman J, Radasky W, Savage E 2010 Meta-R-321

    [3]

    Keith S, Earl W 2019 DTRA-TR-19-41

    [4]

    Tesche F M, Barnes P R, Sakis A P 1992 DE92-010365

    [5]

    欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋 2012 61 242801Google Scholar

    Ouyang J M, Ma Y Y, Shao F Q, Zou D B, Liu J X 2012 Acta Phys. Sin. 61 242801Google Scholar

    [6]

    陶应龙 2010 博士学位论文 (北京: 清华大学)

    Tao Y L 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [7]

    杨斌, 牛胜利, 朱金辉, 黄流兴 2012 61 202801Google Scholar

    Yang B, Niu S L, Zhu J H, Huang L X 2012 Acta Phys. Sin. 61 202801Google Scholar

    [8]

    彭国良, 张俊杰 2021 70 180703Google Scholar

    Peng G Lg, Zhang J J 2021 Acta Phys. Sin. 70 180703Google Scholar

    [9]

    Peng G L, Zhang J J, Chen J N 2021 Phys. Fluids 33 076602Google Scholar

    [10]

    Winske D 1991 AD-A243198

    [11]

    Thomas V A, Brecht S H 1986 Phys. Fluid 29 2444Google Scholar

    [12]

    Brecht S H, Thomas V A 1988 Comput. Phys. Commun. 48 135Google Scholar

    [13]

    Gladd N T, Brecht S H 1995 DNA-TR-94-161

    [14]

    U. S. Standard Atmosphere 1976 ADA035728

    [15]

    王建国, 牛胜利, 张殿辉 2010 高空核爆炸效应参数手册 (北京: 原子能出版) 第35页

    Wang J G, Niu S L, Zhang D H 2010 Parameter Handbook of High Attitude Nuclear Detonation Effects (Beijing: Atomic Energy Press) p35 (in Chinese)

    [16]

    Douglas S H 1982 J. Comput. Phys. 47 452462

    [17]

    Gargaté L, Bingham R, Fonseca R A, Silva L O 2007 Comput. Phys. Commun. 176 419Google Scholar

    [18]

    Lipatov A S 2002 The Hybrid Multiscale Simulation Technology (Berlin: Springer)

    [19]

    Holland D H, Kaufman A M, O’Dell A A 1977 DNA-4501 F

    [20]

    Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (Emp) Attack 2017 Vol. II: Recommended E3 HEMP Heave Electric Field Waveform for the Critical Infrastructures

  • [1] 刘超, 刘世龙, 杨毅, 冯晶, 李昱兆. 252Cf自发裂变K X射线发射与动能-电荷关系.  , 2024, 73(14): 142501. doi: 10.7498/aps.73.20240563
    [2] 彭国良, 张俊杰. 基于流体-磁流体-粒子混合方法的高空核爆炸碎片云模拟.  , 2021, 70(18): 180703. doi: 10.7498/aps.70.20210347
    [3] 杨蒙生, 易泰民, 郑凤成, 唐永建, 张林, 杜凯, 李宁, 赵利平, 柯博, 邢丕峰. 沉积态铀薄膜表面氧化的X射线光电子能谱.  , 2018, 67(2): 027301. doi: 10.7498/aps.67.20172055
    [4] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性.  , 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [5] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 不同动能的129Xe26+与Au表面作用产生的X射线谱.  , 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [6] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟.  , 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [7] 杨发展, 沈丽如, 王世庆, 唐德礼, 金凡亚, 刘海峰. 等离子体增强化学气相沉积法制备含氢类金刚石膜的紫外Raman光谱和X射线光电子能谱研究.  , 2013, 62(1): 017802. doi: 10.7498/aps.62.017802
    [8] 余波, 陈伯伦, 侯立飞, 苏明, 黄天晅, 刘慎业. 化学气相沉积金刚石探测器测量辐射驱动内爆的硬X射线.  , 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [9] 张小安, 李耀宗, 赵永涛, 梁昌慧, 程锐, 周贤明, 王兴, 雷瑜, 孙渊博, 徐戈, 李锦玉, 肖国青. Arq+入射金表面激发靶原子M-X射线的动能和势能的阈值.  , 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [10] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高能电子碰撞电离对高空核爆炸辐射电离的影响.  , 2012, 61(21): 212802. doi: 10.7498/aps.61.212802
    [11] 欧阳建明, 马燕云, 邵福球, 邹德滨, 刘建勋. 高空核爆炸X射线电离的时空分布数值模拟.  , 2012, 61(24): 242801. doi: 10.7498/aps.61.242801
    [12] 欧阳建明, 马燕云, 邵福球, 邹德滨. 高空核爆炸下大气的X射线电离及演化过程数值模拟.  , 2012, 61(8): 083201. doi: 10.7498/aps.61.083201
    [13] 杨斌, 牛胜利, 朱金辉, 黄流兴. 高空核爆炸碎片云早期扩展规律研究.  , 2012, 61(20): 202801. doi: 10.7498/aps.61.202801
    [14] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱.  , 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [15] 陶应龙, 王建国, 牛胜利, 朱金辉, 范如玉. 高空核爆炸瞬发辐射电离效应的数值模拟.  , 2010, 59(8): 5914-5920. doi: 10.7498/aps.59.5914
    [16] 顾旭东, 赵正予, 倪彬彬, 汪枫. 高空核爆炸形成人工辐射带的数值模拟.  , 2009, 58(8): 5871-5878. doi: 10.7498/aps.58.5871
    [17] 赵正予, 王 翔. 空中核爆炸电离效应的数值模拟.  , 2007, 56(7): 4297-4304. doi: 10.7498/aps.56.4297
    [18] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布.  , 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [19] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响.  , 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [20] 廖梅勇, 秦复光, 柴春林, 刘志凯, 杨少延, 姚振钰, 王占国. 离子能量和沉积温度对离子束沉积碳膜表面形貌的影响.  , 2001, 50(7): 1324-1328. doi: 10.7498/aps.50.1324
计量
  • 文章访问数:  3955
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-03
  • 修回日期:  2022-08-29
  • 上网日期:  2022-10-13
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map