搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有大光电导增益的氧化镓薄膜基深紫外探测器阵列

刘增 李磊 支钰崧 都灵 方君鹏 李山 余建刚 张茂林 杨莉莉 张少辉 郭宇锋 唐为华

引用本文:
Citation:

具有大光电导增益的氧化镓薄膜基深紫外探测器阵列

刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华

Gallium oxide thin film-based deep ultraviolet photodetector array with large photoconductive gain

Liu Zeng, Li Lei, Zhi Yu-Song, Du Ling, Fang Jun-Peng, Li Shan, Yu Jian-Gang, Zhang Mao-Lin, Yang Li-Li, Zhang Shao-Hui, Guo Yu-Feng, Tang Wei-Hua
PDF
HTML
导出引用
  • 氧化镓在深紫外探测方面具有天然的材料优势, 鉴于探测器阵列在光学成像等领域有着十分重要的用途, 本文主要介绍了一个五叉指电极结构的4×4氧化镓基深紫外探测器阵列. 氧化镓薄膜由金属有机化学气相沉积技术生长得到, 器件的加工通过紫外光刻、剥离和离子束溅射技术完成. 由此得到的氧化镓薄膜结晶度高且表面均匀. 探测器具有优异的深紫外光响应特性, 光响应度可达2.65×103 A/W, 探测度达2.76×1016 Jones, 同时还具有(1.29×106)%的外量子效率, 光电导增益高达12900; 16个探测器单元的暗电流和光电流均具有良好的均匀性. 本文从光电性能和应用前景的角度说明了氧化镓深紫外探测器阵列的巨大应用潜力.
    Gallium oxide (Ga2O3) has the natural advantages in deep ultraviolet absorbance for performing deep ultraviolet photodetection. Owing to the vital application of photodetector array in optical imaging, in this work, we introduce a 4×4 Ga2O3-based photodetector array with five-finger interdigital electrodes, in which the high-quality and uniform Ga2O3 thin film is grown by using metal-organic chemical vapor deposition technique, and the device is fabricated by using the following methods: ultraviolet photolithography, lift-off, and ion beam sputtering . The photodetector cell possesses a responsivity of 2.65×103 A/W, a detectivity of 2.76×1016 Jones, an external quantum efficiency of (1.29×106)%, and a photoconductive gain as high as 12900. The 16-cells in this array show good uniformity. In this work the great application potential of gallium oxide deep ultraviolet detector array is illustrated from the perspective of optoelectronic performance and application prospect.
      通信作者: 刘增, zengliu@njupt.edu.cn ; 郭宇锋, yfguo@njupt.edu.cn ; 唐为华, whtang@njupt.edu.cn
    • 基金项目: 南京邮电大学引进人才科研启动基金项目(自然科学)(批准号: XK1060921115, XK1060921002)、国家自然科学基金(批准号: 61774019)和山西省基础研究计划(批准号: 202103021223185)资助的课题.
      Corresponding author: Liu Zeng, zengliu@njupt.edu.cn ; Guo Yu-Feng, yfguo@njupt.edu.cn ; Tang Wei-Hua, whtang@njupt.edu.cn
    • Funds: Project supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115, XK1060921002), the National Natural Science Foundation of China (Grant No. 61774019), and the Fundamental Research Program of Shanxi Province, China (Grant No. 202103021223185).
    [1]

    McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar

    [2]

    葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 71 110703Google Scholar

    Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar

    [3]

    Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar

    [4]

    Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar

    [5]

    Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar

    [6]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [7]

    Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    刘增 2021 博士学位论文 (北京: 北京邮电大学)

    Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [10]

    Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar

    [11]

    Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar

    [12]

    陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页

    Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)

    [13]

    Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar

    [14]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [15]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [16]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

    [17]

    Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar

    [18]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [19]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [20]

    Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar

    [21]

    Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar

    [22]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [23]

    Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar

    [24]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [25]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [26]

    Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar

    [27]

    马海林, 苏庆 2014 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [28]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [29]

    Wager J F 2003 Science 300 1245Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [32]

    欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 55 2170Google Scholar

    Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar

    [33]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [34]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [35]

    Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar

    [36]

    Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar

  • 图 1  MOCVD生长的Ga2O3薄膜 (a) XRD图; (b) 表面SEM图; (c) 表面AFM图; (d) 紫外-可见光吸收光谱, 内插图为(αhv)2hv的函数曲线

    Fig. 1.  The MOCVD-grown Ga2O3 thin film: (a) The XRD pattern; (b) surface SEM image; (c) AFM image; (d) UV-vis absorbance spectrum, The inset is the relationship of (αhv)2 and hv.

    图 2  (a) 2 in薄膜上制备的6只Ga2O3探测器阵列的平面结构示意图; (b) 图(a)蓝色框内探测器阵列的结构示意图; (c) 图(b)中红色框局部放大图

    Fig. 2.  (a) The schematic diagrams of the six Ga2O3 photodetector arrays; (b) the enlarged portion of blue mark in figure (a); (c) the enlarged portion of red mark in Fig. (b).

    图 3  Ga2O3探测器阵列 (a)线性I-V特性曲线; (b) 对数I-V特性曲线; (c)光电流与光强的关系图; (d)动态响应图

    Fig. 3.  (a) The linear I-V; (b) semi-log I-V; (c) the relationship of photocurrent and light intensity; (d) the time-resolved transient photo response of the Ga2O3 photodetector array.

    图 4  10 V偏压下, 16个探测器单元在不同光强的入射光照射下暗电流与光电流的统计数值

    Fig. 4.  The statistic photo and dark current of the 16 photodetector cells at 10 V, under the illuminations with various light intensities.

    Baidu
  • [1]

    McClintock R, Mayes K, Yasan A, Shiell D, Kung P, Razeghi M 2005 Appl. Phys. Lett. 86 011117Google Scholar

    [2]

    葛浩楠, 谢润章, 郭家祥, 李庆, 余羿叶, 何家乐, 王芳, 王鹏, 胡伟达 2022 71 110703Google Scholar

    Ge H N, Xie R Z, Guo J X, Li Q, Yu Y Y, He J L, Wang F, Wang P, Hu W D 2022 Acta Phys. Sin. 71 110703Google Scholar

    [3]

    Li L, Ye S, Qu J, Zhou F, Song J, Shen G 2021 Small 17 2005606Google Scholar

    [4]

    Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, Shan C 2021 Carbon 173 427Google Scholar

    [5]

    Konstantatos G, Sargent E H 2010 Nat. Nanotechnol. 5 391Google Scholar

    [6]

    郭道友, 李培刚, 陈政委, 吴真平, 唐为华 2019 68 078501Google Scholar

    Guo D Y, Li P G, Chen Z W, Wu Z P, Tang W H 2019 Acta Phys. Sin. 68 078501Google Scholar

    [7]

    Chen X, Ren F, Gu S, Ye J 2019 Photon. Res. 7 381Google Scholar

    [8]

    Xu J, Zheng W, Huang F 2019 J. Mater. Chem. C 7 8753Google Scholar

    [9]

    刘增 2021 博士学位论文 (北京: 北京邮电大学)

    Liu Z 2021 Ph. D. Dissertation (Beijing: Beijing University of Posts and Telecommunications) (in Chinese)

    [10]

    Liu Z, Li P G, Zhi Y S, Wang X L, Chu X L, Tang W H 2019 Chin. Phys. B 28 017105Google Scholar

    [11]

    Yuan Y, Hao W, Mu W, Wang Z, Chen X, Liu Q, Xu G, Wang C, Zhou H, Zou Y, Zhao X, Jia Z, Ye J, Zhang J, Long S, Tao X, Zhang R, Hao Y 2021 Fundam. Res. 1 697Google Scholar

    [12]

    陆海, 张荣 2021 宽禁带半导体紫外光电探测器 (西安: 西安电子科技大学出版社) 第164页

    Lu H, Zhang R 2021 Wide Band Gap Semiconductor UV Photodetector (Xi’an: Xidian University Press) p164 (in Chinese)

    [13]

    Peng Y, Zhang Y, Chen Z, Guo D, Zhang X, Li P, Wu Z, Tang W 2018 IEEE Photon. Technol. Lett. 30 993Google Scholar

    [14]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [15]

    Tak B R, Singh R 2021 ACS Appl. Electron. Mater. 3 2145Google Scholar

    [16]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

    [17]

    Pratiyush A S, Muazzam U U, Kumar S, Vijayakumar P, Ganesamoorthy S, Subramanian N, Muralidharan R, Nath D N 2019 IEEE Photon. Technol. Lett. 31 923Google Scholar

    [18]

    Chen Y, Lu Y, Liao M, Tian Y, Liu Q, Gao C, Yang C, Shan C 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [19]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [20]

    Qin Y, Li L H, Yu Z, Wu F, Dong D, Guo W, Zhang Z, Yuan J H, Xue K H, Miao X, Long S 2021 Adv. Sci. 80 2101106Google Scholar

    [21]

    Qin Y, Long S, He Q, Dong H, Jian G, Zhang Y, Hou X, Tan P, Zhang Z, Lu Y, Shan C, Wang J, Hu W, Lv H, Liu Q, Liu M 2019 Adv. Electron. Mater. 5 1900389Google Scholar

    [22]

    Hou X, Zhao X, Zhang Y, Zhang Z, Liu Y, Qin Y, Tan P, Chen C, Yu S, Ding M, Xu G, Hu Q, Long S 2022 Adv. Mater. 34 2106923Google Scholar

    [23]

    Tong L, Huang X, Wang P, Ye L, Peng M, An L, Sun Q, Zhang Y, Yang G, Li Z, Zhong F, Wang F, Wang Y, Motlag M, Wu W, Cheng G J, Hu W 2020 Nat. Commun. 11 2308Google Scholar

    [24]

    Liu Z, Zhi Y, Li S, Liu Y, Tang X, Yan Z, Li P, Li X, Guo D, Wu Z, Tang W 2020 J. Phys. D: Appl. Phys. 53 085105Google Scholar

    [25]

    Liu Z, Li S, Yan Z, Liu Y, Zhi Y, Wang X, Wu Z, Li P, Tang W 2020 J. Mater. Chem. C 8 5071Google Scholar

    [26]

    Li Z, Jiao T, Hu D, Lv Y, Li W, Dong X, Zhang Y, Feng Z, Zhang B 2019 Coatings 9 281Google Scholar

    [27]

    马海林, 苏庆 2014 63 116701Google Scholar

    Ma H L, Su Q 2014 Acta Phys. Sin. 63 116701Google Scholar

    [28]

    冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟 2018 67 218101Google Scholar

    Feng Q J, Li F, Li T T, Li Y Z, Shi B, Li M K, Liang H W 2018 Acta Phys. Sin. 67 218101Google Scholar

    [29]

    Wager J F 2003 Science 300 1245Google Scholar

    [30]

    周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊 2021 70 178503Google Scholar

    Zhou S R, Zhang H, Mo H L, Liu H W, Xiong Y Q, Li H L, Kong C Y, Ye L J, Li W J 2021 Acta Phys. Sin. 70 178503Google Scholar

    [31]

    李秀华, 张敏, 杨佳, 邢爽, 高悦, 李亚泽, 李思雨, 王崇杰 2022 71 048501Google Scholar

    Li X H, Zhang M, Yang J, Xing S, Gao Y, Li Y Z, Li S Y, Wang C J 2022 Acta Phys. Sin. 71 048501Google Scholar

    [32]

    欧阳晓平, 王兰, 范如玉, 张忠兵, 王伟, 吕反修, 唐伟忠, 陈广超 2006 55 2170Google Scholar

    Ouyang X P, Wang L, Fan R Y, Zhang Z B, Wang W, Lv F X, Tang W Z, Chen G C 2006 Acta Phys. Sin. 55 2170Google Scholar

    [33]

    Li S, Guo D, Li P, Wang X, Wang Y, Yan Z, Liu Z, Zhi Y, Huang Y, Wu Z, Tang W 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [34]

    Liu Z, Wang X, Liu Y, Guo D, Li S, Yan Z, Tan C K, Li W, Li P, Tang W 2019 J. Mater. Chem. C 7 13920Google Scholar

    [35]

    Li S, Yan Z Y, Tang J C, Yue J Y, Liu Z, Li P G, Guo Y F, Tang W H 2022 IEEE Trans. Electron Devices 69 2443Google Scholar

    [36]

    Qiao B, Zhang Z, Xie X, Li B, Chen X, Zhao H, Liu K, Liu L, Shen D 2021 J. Mater. Chem. C 9 4039Google Scholar

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器.  , 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器.  , 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志. 氧化镓悬臂式薄膜日盲探测器及其电弧检测应用.  , 2024, 73(9): 098501. doi: 10.7498/aps.73.20240186
    [4] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [5] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器.  , 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [6] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析.  , 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [7] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能.  , 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [8] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器.  , 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [9] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响.  , 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [10] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备.  , 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [11] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管.  , 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [12] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器.  , 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [13] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管.  , 2021, (): . doi: 10.7498/aps.70.20211536
    [14] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性.  , 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [15] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展.  , 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [16] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [17] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究.  , 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [18] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展.  , 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [19] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响.  , 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [20] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析.  , 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
计量
  • 文章访问数:  6319
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-30
  • 修回日期:  2022-06-13
  • 上网日期:  2022-10-12
  • 刊出日期:  2022-10-20

/

返回文章
返回
Baidu
map