搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内嵌横向PNP晶体管的新型静电放电双向防护器件

刘静 党跃栋 刘慧婷 赵岩

引用本文:
Citation:

内嵌横向PNP晶体管的新型静电放电双向防护器件

刘静, 党跃栋, 刘慧婷, 赵岩

Novel dual-direction electrostatic discharge device with lateral PNP transistor

Liu Jing, Dang Yue-Dong, Liu Hui-Ting, Zhao Yan
PDF
HTML
导出引用
  • 提出一种内嵌横向PNP晶体管的静电放电(ESD)双向防护器件(PNP_DDSCR). 对新结构器件在不同ESD应力模式下的响应过程以及电流输运机制进行研究, 内嵌横向PNP晶体管的引入, 提高了DDSCR系统内部寄生晶体管的注入效率, 促进正反馈系统建立, 同时引入两条新的电流泄放通路, 抑制电导调制效应, 提高了电流泄放能力. 结果表明, 与传统的DDSCR器件相比, PNP_DDSCR器件在传输线脉冲(TLP)测试仿真中触发电压下降了31%, 维持电压提高了16.8%, ESD设计窗口优化44.5%, 具有更低的导通电阻. 快速传输线脉冲(VF-TLP)测试仿真结果表明, 新结构器件对瞬态过冲电压有更好的钳位能力, 同时保持了较大的开启速度, 在VF-TLP应力0.1 A时, PNP_DDSCR器件的过冲电压仅为DDSCR器件的37%.
    With the shrinking of semiconductor technology and the increasing of integrated circuits, electrostatic discharge (ESD) as a common natural phenomenon has become one of the main reasons for the failure and reliability reduction of electronic products in integrated circuits. A novel dual-direction ESD device (PNP_DDSCR) with embedded lateral PNP transistor is proposed for diminishing ESD damage. The response process and current transportation of PNP_DDSCR under different ESD stress modes are investigated. Comparative analyses between conventional DDSCR and PNP_DDSCR are executed by TCAD simulation. On the stage of device triggering, the embedded lateral PNP transistor inner DDSCR system provides triggering current for device. The injection efficiency of parasitic transistor in the DDSCR system is improved, and the positive feedback system is promoted. Thus, the holding voltage of PNP_DDSCR is higher than that of conventional DDSCR. At the same time, an extra triggering path introduced by embedded lateral PNP transistor of PNP_DDSCR makes the total triggering path of device shorten. Therefore, the transient overshoot voltage of PNP_DDSCR is lower than that of DDSCR. For thermal performance, most of the heat first accumulates near the lateral PNP transistor , and then the peak point of heat turns to main SCR path with the conduction of PNP_DDSCR. The heat accumulation in PNP_DDSCR is shared by the path of embedded lateral PNP transistor. As a result, the average temperature in PNP_DDSCR is lower than that in DDSCR and the ability of PNP_DDSCR to dissipate heat is more perfect. Comparing with DDSCR, the conclusions are obtained. Under the condition of transmission line pulse (TLP) test simulation analyses, the triggering voltage is reduced by 31%, the holding voltage is increased by 16.8%, the ESD design window is optimized by 44.5%, and on-resistance is lower. When TLP stress is 2.67 A, the average temperature of PNP_DDSCR is much lower than that of traditional DDSCR in the whole conduction process. With the increase of pulse lasting time, average temperature difference between two devices becomes great further. According to the very fast TLP (VF-TLP) testing results, clamping capability of PNP_DDSCR under transient overshoot voltage is more stable under the condition of fast turn-on speed. When the VF-TLP stress is 0.1 A, the overshoot voltage of PNP_DDSCR device is the 37% of that of DDSCR device while the PNP_DDSCR maintains a relatively fast triggering speed. Thus, the ESD protection capability of PNP_DDSCR is superior.
      通信作者: 刘静, jingliu@xaut.edu.cn
    • 基金项目: 陕西省重点研发计划(批准号: 2022GY-016)资助的课题.
      Corresponding author: Liu Jing, jingliu@xaut.edu.cn
    • Funds: Project supported by the Key Research and Development of Shaanxi Province, China (Grant No. 2022GY-016).
    [1]

    Zhou Z J, Jin X L 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS) Hangzhou, China, December 14–16, 2017 p1

    [2]

    Do K I, Lee B S, Chae H G, Seo J J, Koo Y S 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS) Bern, Switzerland, December 20–22, 2018 p524

    [3]

    Zhou Z J, Jin X L, Wang Y, Dong P 2019 IEEE 13th International Conference on ASIC (ASICON) Chongqing, China, October 29th-November 1st, 2019 p1

    [4]

    Du F B, Liu Z W, Liu J Z, Wang J, Liou J J 2019 IEEE Trans. Device Mater. Rel. 19 169Google Scholar

    [5]

    Da W L, Gijs d R, Wei J T, Theo S, Albert J H 2018 IEEE Electron Device Lett. 39 331Google Scholar

    [6]

    Do K I, Lee B S, Koo Y S 2019 IEEE J. Electron Devi. 7 601Google Scholar

    [7]

    Do K I, Song B B, Koo Y S 2020 IEEE Trans. Electron Devi. 67 5020Google Scholar

    [8]

    Zhu L, Liang H L, Gu X F, Xu J 2020 Chin. Phys. B 29 652Google Scholar

    [9]

    Qi Z, Qiao M, He Y T, Zhang B 2017 Chin. Phys. B 26 350Google Scholar

    [10]

    Huang C Y, Chen Q K, Chi J F, Huang T H 2021 IEEE Trans. Device Mater. Rel. 21 64Google Scholar

    [11]

    Du F B, Hou F, Song W Q, Chen L, Nie Y L, Qing Y H, Xu Y C, Liu J Z, Liu Z W, Liou J J 2020 IEEE Trans. Electron Devi. 67 576Google Scholar

    [12]

    Du F B, Chang K C, Lin X N, Hou F, Zhang Y X, Han A R, Luo X, Liu Z W 2022 IEEE Trans. Electron Devi. 69 3490Google Scholar

    [13]

    Do K I, Koo Y S 2020 IEEE J. Electron Devi. 8 635Google Scholar

    [14]

    Wu M, Chen Z J 2021 9th International Symposium on Next Generation Electronics (ISNE) Changsha, China, July 9–11, 2021 p1

    [15]

    Zeng J, Dong S R, Liou J J, Han Y, Zhong L, Wang W H 2015 IEEE Trans. Electron Devi. 62 606Google Scholar

    [16]

    Du F B, Jiang G J, Huang M C, Zou K P, Hou F, Song W Q, Liu J Z, Xiong X L, Hou L L, Liu Z W, Liou J J 2021 IEEE Trans. Electron Devi. 68 6338Google Scholar

    [17]

    Liu J Z, Liu Y L, Han A R, Nie Y L, Huang Q P, Liu Z W 2022 IEEE Trans. Electron Devi. 69 2534Google Scholar

    [18]

    Zhou Z J, Jin X L, Wang Y, Dong P 2021 Chin. Phys. B 30 610Google Scholar

    [19]

    Wang Y, Jin X L, Peng Y, Luo J, Yang J, Zheng Z W, Jiang L Y, Zhong Z Y 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 994Google Scholar

    [20]

    De R, Gijs 2018 IEEE J. Electron Devices Soc. 6 1097Google Scholar

    [21]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第187—201, 415—434页

    Simon M, Kork K(translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp187–201, 415–434(in Chinese)

    [22]

    约瑟夫 L, 海因里希 S, 乌维 S, 里克 D D著 (卞抗, 杨莹, 刘静, 蒋荣舟 译) 2019 功率半导体器件-原理、特性和可靠性 (第2版) (北京: 机械工业出版社) 第248—254页

    Josef L, Heinrich S, Uwe S, Rik D D (translated by Bian K, Yang Y, Liu J, Jiang R Z) 2019 Semiconductor Power Devices: Physics, Characteristics, Reliability (2nd Ed.) (Beijing: China Machine Press) pp248–254 (in Chinese)

    [23]

    Chen Q, Ma R, Zhang W, Lu F, Wang C K, Liang O, Zhang F L, Li C, Tang H, Xie Y H, Wang A 2016 IEEE Trans. Electron Devi. 63 3205Google Scholar

  • 图 1  PNP_DDSCR器件结构剖面图与等效电路图

    Fig. 1.  Structural cross-section and equivalent circuit diagram of PNP _ DDSCR device.

    图 2  DDSCR器件结构剖面图与等效电路图

    Fig. 2.  Structural cross-section and equivalent circuit diagram of DDSCR device.

    图 3  DDSCR与PNP_DDSCR的TLP仿真测试I-V曲线对比

    Fig. 3.  Comparison of TLP simulation test I-V curves between DDSCR and PNP_DDSCR.

    图 4  内嵌PNP晶体管电流传输示意图

    Fig. 4.  Schematic diagram of embedded PNP transistor current transmission.

    图 5  PNP_DDSCR器件T1端子施加不同应力TLP电流时的电压响应

    Fig. 5.  Voltage response of PNP_DDSCR device T1 terminal when TLP current with different stress is applied.

    图 6  PNP_DDSCR器件碰撞电离分布图 (a) T1端子应力为2×10–7A TLP电流; (b) T1端子应力为3×10–7 A TLP电流

    Fig. 6.  Impact ionization distribution diagram of PNP_ DDSCR device: (a) T1 terminal stress is 2×10–7 A TLP current; (b) T1 terminal stress is 3×10–7 A TLP current.

    图 7  PNP_DDSCR器件电流密度分布图 (a) T1端子应力为2×10–7 A TLP电流; (b) T1端子应力为3×10–7 A TLP电流

    Fig. 7.  Current density distribution diagram of PNP_ DDSCR device: (a) T1 terminal stress is 2×10–7 A TLP current; (b) T1 terminal stress is 3×10–7 A TLP current.

    图 8  T1端子应力为0.08 A TLP电流的电流密度分布图 (a) DDSCR器件电流密度分布图; (b) PNP_DDSCR电流密度分布图

    Fig. 8.  Current density distribution diagram of 0.08 A TLP current at T1 terminal: (a) Current density distribution diagram of DDSCR device; (b) current density distribution diagram of PNP_DDSCR device.

    图 9  T1端子应力为2.68 A TLP电流的最高温度随时间的变化过程对比图

    Fig. 9.  The temperature changing processes with time for T1 TLP stress of 2.68 A.

    图 10  DDSCR器件温度分布图

    Fig. 10.  Temperature distribution diagram of DDSCR device.

    图 11  图9中三点PNP_DDSCR器件导通过程温度分布图 (a) A点; (b) B点; (c) C

    Fig. 11.  Temperature distribution of PNP _ DDSCR device at different point in Fig.9: (a) Point A; (b) point B; (c) point C.

    图 12  T1端子应力为2.68 A TLP电流的单位面积平均温度随时间的变化过程对比图

    Fig. 12.  The change processes of average temperature per unit area with time when T1 TLP stress is 2.68 A.

    图 13  电流-过冲电压曲线对比图

    Fig. 13.  Comparison of current-overshoot voltage curve.

    图 14  0.1 A VF-TLP响应过程对比图

    Fig. 14.  Comparison of VF-TLP response process at 0.1 A.

    图 15  0.1 A VF-TLP脉冲强度不同时刻电势分布图 (a) 1×10–10 s时刻DDSCR电势分布图; (b) 1×10–10 s时刻PNP_DDSCR电势分布图; (c) 8×10–9 s时刻DDSCR电势分布图; (d) 8×10–9 s时刻PNP_DDSCR电势分布图

    Fig. 15.  Potential distribution diagram of 0.1 A VF-TLP pulse intensity at different times: (a) DDSCR potential distribution diagram at 1×10–10 s; (b) potential distribution diagram of PNP_DDSCR at 1×10–10 s; (c) DDSCR potential distribution diagram at 8×10–9 s; (d) potential distribution diagram of PNP_DDSCR at 8×10–9 s.

    表 1  PNP_DDSCR的关键尺寸表

    Table 1.  Critical dimensions of PNP_ DDSCR.

    名称尺寸/μm
    DDSCRPNP_DDSCR
    D11.61.6
    D20.30.3
    D31.01.0
    D40.60.6
    下载: 导出CSV

    表 2  掺杂浓度参数表

    Table 2.  Doping profile.

    区域(Layer)掺杂类型掺杂浓度/cm–3
    P_SubBoron1×1016
    N_BurPhosphorus1×1019
    P_WellBoron1×1017
    N_WellPhosphorus1×1017
    N+Phosphorus1×1020
    P+Boron1×1020
    下载: 导出CSV
    Baidu
  • [1]

    Zhou Z J, Jin X L 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS) Hangzhou, China, December 14–16, 2017 p1

    [2]

    Do K I, Lee B S, Chae H G, Seo J J, Koo Y S 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS) Bern, Switzerland, December 20–22, 2018 p524

    [3]

    Zhou Z J, Jin X L, Wang Y, Dong P 2019 IEEE 13th International Conference on ASIC (ASICON) Chongqing, China, October 29th-November 1st, 2019 p1

    [4]

    Du F B, Liu Z W, Liu J Z, Wang J, Liou J J 2019 IEEE Trans. Device Mater. Rel. 19 169Google Scholar

    [5]

    Da W L, Gijs d R, Wei J T, Theo S, Albert J H 2018 IEEE Electron Device Lett. 39 331Google Scholar

    [6]

    Do K I, Lee B S, Koo Y S 2019 IEEE J. Electron Devi. 7 601Google Scholar

    [7]

    Do K I, Song B B, Koo Y S 2020 IEEE Trans. Electron Devi. 67 5020Google Scholar

    [8]

    Zhu L, Liang H L, Gu X F, Xu J 2020 Chin. Phys. B 29 652Google Scholar

    [9]

    Qi Z, Qiao M, He Y T, Zhang B 2017 Chin. Phys. B 26 350Google Scholar

    [10]

    Huang C Y, Chen Q K, Chi J F, Huang T H 2021 IEEE Trans. Device Mater. Rel. 21 64Google Scholar

    [11]

    Du F B, Hou F, Song W Q, Chen L, Nie Y L, Qing Y H, Xu Y C, Liu J Z, Liu Z W, Liou J J 2020 IEEE Trans. Electron Devi. 67 576Google Scholar

    [12]

    Du F B, Chang K C, Lin X N, Hou F, Zhang Y X, Han A R, Luo X, Liu Z W 2022 IEEE Trans. Electron Devi. 69 3490Google Scholar

    [13]

    Do K I, Koo Y S 2020 IEEE J. Electron Devi. 8 635Google Scholar

    [14]

    Wu M, Chen Z J 2021 9th International Symposium on Next Generation Electronics (ISNE) Changsha, China, July 9–11, 2021 p1

    [15]

    Zeng J, Dong S R, Liou J J, Han Y, Zhong L, Wang W H 2015 IEEE Trans. Electron Devi. 62 606Google Scholar

    [16]

    Du F B, Jiang G J, Huang M C, Zou K P, Hou F, Song W Q, Liu J Z, Xiong X L, Hou L L, Liu Z W, Liou J J 2021 IEEE Trans. Electron Devi. 68 6338Google Scholar

    [17]

    Liu J Z, Liu Y L, Han A R, Nie Y L, Huang Q P, Liu Z W 2022 IEEE Trans. Electron Devi. 69 2534Google Scholar

    [18]

    Zhou Z J, Jin X L, Wang Y, Dong P 2021 Chin. Phys. B 30 610Google Scholar

    [19]

    Wang Y, Jin X L, Peng Y, Luo J, Yang J, Zheng Z W, Jiang L Y, Zhong Z Y 2021 IEEE J. Emerg. Sel. Topics Power Electron. 9 994Google Scholar

    [20]

    De R, Gijs 2018 IEEE J. Electron Devices Soc. 6 1097Google Scholar

    [21]

    施敏, 伍国珏 著 (耿莉, 张瑞智 译) 2008 半导体器件物理 (第3版) (西安: 西安交通大学出版社) 第187—201, 415—434页

    Simon M, Kork K(translated by Geng L, Zhang R Z) 2008 Physics of Semiconductor Devices (3rd Ed.) (Xi’an: Xi’an Jiaotong University Press) pp187–201, 415–434(in Chinese)

    [22]

    约瑟夫 L, 海因里希 S, 乌维 S, 里克 D D著 (卞抗, 杨莹, 刘静, 蒋荣舟 译) 2019 功率半导体器件-原理、特性和可靠性 (第2版) (北京: 机械工业出版社) 第248—254页

    Josef L, Heinrich S, Uwe S, Rik D D (translated by Bian K, Yang Y, Liu J, Jiang R Z) 2019 Semiconductor Power Devices: Physics, Characteristics, Reliability (2nd Ed.) (Beijing: China Machine Press) pp248–254 (in Chinese)

    [23]

    Chen Q, Ma R, Zhang W, Lu F, Wang C K, Liang O, Zhang F L, Li C, Tang H, Xie Y H, Wang A 2016 IEEE Trans. Electron Devi. 63 3205Google Scholar

  • [1] 李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展. 高温对MOSFET ESD防护器件维持特性的影响.  , 2022, 71(12): 128501. doi: 10.7498/aps.71.20220172
    [2] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究.  , 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [3] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型.  , 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [4] 吴军科, 周雒维, 卢伟国. 电压型逆变器的通用分岔控制策略研究.  , 2012, 61(21): 210202. doi: 10.7498/aps.61.210202
    [5] 陈代兵, 王冬, 秦奋, 文杰, 金晓, 安海狮, 张新凯. 磁绝缘线振荡器的起振电压与注入电压关系的分析.  , 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [6] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型.  , 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [7] 董刚, 刘嘉, 薛萌, 杨银堂. 基于双电源电压和双阈值电压的全局互连性能优化.  , 2011, 60(4): 046602. doi: 10.7498/aps.60.046602
    [8] 孔艳岩, 张世昌. 加载静电压的同轴回旋管放大器的非线性模拟.  , 2011, 60(9): 095201. doi: 10.7498/aps.60.095201
    [9] 刘玉荣, 陈伟, 廖荣. 低工作电压聚噻吩薄膜晶体管.  , 2010, 59(11): 8088-8092. doi: 10.7498/aps.59.8088
    [10] 郭延江, 熊永建. 阶梯电压下量子环的动力学性质.  , 2010, 59(1): 555-559. doi: 10.7498/aps.59.555
    [11] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型.  , 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [12] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压.  , 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [13] 李 琦, 张 波, 李肇基. 漂移区表面阶梯掺杂LDMOS的击穿电压模型.  , 2008, 57(3): 1891-1896. doi: 10.7498/aps.57.1891
    [14] 朱文章, 沈顗华. GaAs/AlGaAs多量子阱光生电压谱研究.  , 1996, 45(2): 258-264. doi: 10.7498/aps.45.258
    [15] 田明亮, 毛志强, 张裕恒, 石兢, 梅雪飞, 田德诚. 掺杂蓝青铜的低频电压噪声研究.  , 1994, 43(4): 632-636. doi: 10.7498/aps.43.632
    [16] 张裕恒, 刘宏宝, 陈赓华. 超导交叉膜隧道结的电流-电压滞迴.  , 1985, 34(4): 429-438. doi: 10.7498/aps.34.429
    [17] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅱ).  , 1984, 33(7): 959-966. doi: 10.7498/aps.33.959
    [18] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅰ).  , 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [19] 吉光达, 吴杭生. 关于微波感应直流电压现象的理论.  , 1978, 27(1): 118-120. doi: 10.7498/aps.27.118
    [20] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议.  , 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
计量
  • 文章访问数:  4335
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26
  • 修回日期:  2022-07-06
  • 上网日期:  2022-11-22
  • 刊出日期:  2022-12-05

/

返回文章
返回
Baidu
map