搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于织构表面的摩擦静电发电机制备及其输出性能研究

程广贵 张伟 方俊 蒋诗宇 丁建宁 Noshir S. Pesika 张忠强 郭立强 王莹

引用本文:
Citation:

基于织构表面的摩擦静电发电机制备及其输出性能研究

程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹

Fabrication of triboelectric nanogenerator with textured surface and its electric output performance

Cheng Guang-Gui, Zhang Wei, Fang Jun, Jiang Shi-Yu, Ding Jian-Ning, Noshir S. Pesika, Zhang Zhong-Qiang, Guo Li-Qiang, Wang Ying
PDF
导出引用
  • 摩擦电纳米发电机(TENG)是基于摩擦生电和静电感应复合原理将机械能转换为电能的一种新型能源获取方式. 本文采用模板法制备了几种不同参数的聚二甲基硅氧烷(PDMS)微圆柱结构, 并组装成TENG, 实验研究了接触区表面积、外加载荷对TENGs输出性能的影响. 结果表明, 圆形微柱阵列的存在有效提高了TENG的作用面积及电输出性能, 相同载荷下, 电输出随微柱间距离减小而增加, 在间距为15 m、载荷为5 N时, 输出的平均开路电压和短路电流分别为88 V 和15 A, 是同等条件下、微柱间距为50 m电输出的1.5倍以上; 电输出随载荷增加呈准线性增加, ANSYS软件模拟载荷作用下PDMS微圆柱织构的变形行为, 结果表明, 压力作用下, 微圆柱主要发生压缩变形, 基底的变形导致微柱与上电极之间产生侧向摩擦, 从而产生更多电荷, 提升了电输出性能.
    Contact electrification between insulators, manifesting as static or triboelectricity is a well-known effect. The triboelectric nanogenerator (TENG) which is based on the contact triboelectricification and electrostatic induction provides a promising route for harvesting ambient mechanical energy and converting it into electric energy. The TENG which is due to its unique properties such as simple structures, low cost, high electric density etc., can offset or even replace the traditional power source for small portable electronics, sensors and so on. So far, the influence of factors on the output performance of TENG is still trapped in unsettled questions and under debate. In this paper, we prepare several textured polydimethylsiloxane (PDMS) films with micro rod array by model method and fabricate a TENG with a size of 2222 mm. The electric generation can be achieved with a cycled process of contact and separation between a polymer and metal electrode (PDMS and aluminum respectively in this study). Several influences as the surface structure and external load on the electrical output of the TENG are systematically studied by integrating use of experimenal tests and ANSYS simulation. Results show that the existence of micro rod array on the PDMS films effectively enlarges the contact area and provides more surfaces for charge storage and hence improve the output performance of TENG. When keeping the external load constant, the output increases with decreasing distance between micro rods. When the external load is 5 N and the distance is 15 m, the average output voltage and current as high as 88 V and 15 A can be achieved respectively, which is 1.5 times higher than the output generated when the distance is 50 m. The electrical output increases quasilinearly with the increase of the external load. Simulation results show that the micro rods of PDMS films are mainly compressed by normal load, which results in a bigger diameter of micro rods. The deformations of PDMS substrate leads to the lateral friction between the micro rods and the upper electrode, which produces more charges because of the friction. For 5 N normal load, the deformations of PDMS substrate and micro rods contribute to the sum of displacement vector and the deformations along Z-axis are 32.7 m and 21.3 m respectively, and are 4.96 and 5.04 times higher than the deformation at the load of 1 N. All the results in an enlarging surface area and the larger output correspondingly. Not only does this work present a new type of generator with micro rods on the PDMS surface, which can be an effective method to improve the electrical output of TENG, but also offers a unique point of view for further understanding of the working principle of TENG.
      通信作者: 程广贵, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; 丁建宁, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51335002, 11472117)和清华大学摩擦学国家重点实验室开放基金(批准号: SKLTKF14A01)资助的课题.
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; Ding Jian-Ning, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51335002, 11472117); and the Tribology Science Fund of State Key Laboratory of Tribology(SKLTKF14A01).
    [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1]

    Dresselhaus M S, Thomas I L 2001 Nature 414 332

    [2]

    Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L, Huang W 2015 Chin. Phys. B 24 115202

    [3]

    Mao Y C, Zhao P, McConohy G, Yang H, Tong Y X 2014 Adv. Energy Mater. 4 175

    [4]

    Wang Z L, Zhu G, Yang Y, Wang S H, Pan C F 2012 Mater. Today 155 32

    [5]

    Shen D, Park J H, Noh J H, Choe S Y, Kim S H, Kim D J 2009 Sens. Actuators A 154 103

    [6]

    Horn R G, Smith D T 1992 Science 256 362

    [7]

    Yang W M, Lin C J, Liao J, Li Y Q 2013 Chin. Phys. B 22 097202

    [8]

    Lian Z J 2010 Chin. Phys. B 19 058202

    [9]

    Zhang M Q, Wang Y H, Dong P Y, Zhang J 2012 Acta Phys. Sin. 61 238102 (in Chinese) [张明琪, 王育华, 董鹏玉, 张佳 2012 23 238102]

    [10]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328

    [11]

    Yang Y, Zhu G, Zhang H L, Chen J, Zhong X D, Lin Z H, Su Y J, Bai P, Wen X N, Wang Z L 2013 ACS Nano 7 9461

    [12]

    Lin Z H, Cheng G, Lin L, Lee S, Wang Z L 2013 Angew. Chem. Int. Ed 52 1

    [13]

    Zhang H L, Yang Y, Hou T C, Su Y J, Hu C G, Wang Z L 2013 Nano Energy 2 1019

    [14]

    Wu Y, Jing Q S, Chen J, Bai P, Bai J J, Zhu G, Su Y J, Wang Z L 2015 Adv. Funct. Mater. 25 2166

    [15]

    Niu S M, Wang S H, Lin L, Liu Y, Zhou Y S, Hu Y F, Wang Z L 2013 Energy Environ. Sci. 6 3576

    [16]

    Li W, Sun J, Chen M F 2014 Nano Energy 3 95

    [17]

    Zhang C, Tang W, Han C B, Fan F R, Wang Z L 2014 Adv. Mater. 26 3580

    [18]

    Jie Y, Wang N, Cao X, Xu Y, Li T, Zhang X J, Wang Z L 2015 Acs Nano 9 8376

    [19]

    Wang X F, Niu S M, Yin Y J, Yi F, You Z, Wang Z L 2015 Adv. Energy Mater.1501467

    [20]

    Lee S M, Lee Y, Kim D, Yang Y, Lin L, Lin Z H, Hwang W B, Wang Z L 2013 Nano Energy 2 1113

    [21]

    Zhang X S, Han M D, Wang R X, Zhu F Y, Li Z H, Wang W, Zhang H X 2013 Nano Lett. 13 1168

    [22]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X2013 Nano Energy 4 123

    [23]

    Watson P K, Yu Z Z 1997 J. Electrostat. 40 67

    [24]

    Castle G S P 1997 J. Electrostat. 40 13

    [25]

    Davies D K 1969 J. Phys. D: Appl. Phys. 2 1533

    [26]

    Saurenbach F, Wollmann D, Terris B D, Diaz A F 1992 Langmuir 8 1199

    [27]

    Lee K Y, Chun J S, Lee J H, Kim K N, Kang N R, Kim J Y, Kim M H, Shin K S, Gupta M K, Baik J M, Kim S W 2014 Adv. Mater. 26 5037

    [28]

    He X M, Guo H Y, Yue X L, Gao J, Xi Y, Hu C Q 2015 Nanoscale 7 1896

    [29]

    Tang W, Meng B, Zhang H X 2013 Nano Energy 2 1164

    [30]

    ZhongJ W, Zhong Q Z, Fan F R, Zhang Y, Wang S H, Hu B, Wang Z L 2013 Nano Energy 2491

    [31]

    Wang S, Lin L, Wang Z L 2012 Nano Lett. 12 6339

    [32]

    Seghir R, Arscott S 2015 Sensor Actuat. A:-Phys. 230 33

    [33]

    Ltters J C, Olthuis W, Veltink P H, Bergveld P 1997 J. Micromech. Microeng. 7 145

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料.  , 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用.  , 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [3] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能.  , 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] 李毅伟, 雷佑铭, 杨勇歌. 随机激励下Frenkel-Kontorova模型的纳米摩擦现象.  , 2021, 70(9): 090501. doi: 10.7498/aps.70.20201254
    [5] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用.  , 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [6] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件.  , 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [7] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究.  , 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [8] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件.  , 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [9] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能.  , 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [10] 滕启治, 谭欣, 武紫玉, 沈俊, 王海峰. 大型水轮发电机冷却方式综合评价方法的研究.  , 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [11] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制.  , 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [12] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究.  , 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [13] 黎威志, 王军. 直流法测试薄膜热导的数值模拟研究.  , 2012, 61(11): 114401. doi: 10.7498/aps.61.114401
    [14] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步.  , 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [15] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性.  , 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [16] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究.  , 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [17] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制.  , 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [18] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步.  , 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [19] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议.  , 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
    [20] 陈茂康. 一种脈流发电机之初记.  , 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  8761
  • PDF下载量:  631
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-09
  • 修回日期:  2015-12-27
  • 刊出日期:  2016-03-05

/

返回文章
返回
Baidu
map