搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温对MOSFET ESD防护器件维持特性的影响

李明珠 蔡小五 曾传滨 李晓静 李多力 倪涛 王娟娟 韩郑生 赵发展

引用本文:
Citation:

高温对MOSFET ESD防护器件维持特性的影响

李明珠, 蔡小五, 曾传滨, 李晓静, 李多力, 倪涛, 王娟娟, 韩郑生, 赵发展

Effect of high-temperature on holding characteristics in MOSFET ESD protecting device

Li Ming-Zhu, Cai Xiao-Wu, Zeng Chuan-Bin, Li Xiao-Jing, Li Duo-Li, Ni Tao, Wang Juan-Juan, Han Zheng-Sheng, Zhao Fa-Zhan
PDF
HTML
导出引用
  • 静电放电 (electro-static discharge, ESD) 防护结构的维持电压是决定器件抗闩锁性能的关键参数, 但ESD器件参数的热致变化使得防护器件在高温环境中有闩锁风险. 本文研究了ESD防护结构N沟道金属-氧化物-半导体(N-channel metal oxide semiconductor, NMOS)在30—195 ℃的工作温度下的维持特性. 研究基于0.18 μm部分耗尽绝缘体上硅工艺下制备的NMOS器件展开. 在不同的工作温度下, 使用传输线脉冲测试系统测试器件的ESD特性. 实验结果表明, 随着温度的升高, 器件的维持电压降低. 通过半导体工艺及器件模拟工具进行二维建模及仿真, 提取并分析不同温度下器件的电势、电流密度、静电场、载流子注入浓度等物理参数的分布差异. 通过研究以上影响维持电压的关键参数随温度的变化规律, 对维持电压温度特性的内在作用机制进行了详细讨论, 并提出了改善维持电压温度特性的方法.
    The holding voltage of electrostatic discharge (ESD) protecting structure is the critical parameter to determine the latch-up performance of the protecting device, but the thermal change of ESD device parameters lead the protecting device to suffer latch-up risk at high ambient temperature. In this paper, the holding characteristics of the ESD protecting device at various ambient temperatures ranging from 30 ℃ to 195 ℃ are studied. The investigated ESD structure is the N-channel metal oxide semiconductor (NMOS) transistors fabricated with the 0.18 μm partially depleted silicon-on-insulator process. The ESD characteristics of the device are measured by the transmission line pulse test system at different ambient temperatures. The test results show that the holding voltage (VH) decreases with temperature increasing. The TCAD simulation is carried out to support and analyze the experimental results, and the same trend of VH versus temperature is obtained. Through the analysis of simulation results and theoretical derivation, the underlying physical mechanisms related to the effects of temperature on VH and holding current (IH) are discussed in detail. When the drain is subjected to the same current pulsing and the Source and Body are both grounded, the distributions of current density, electric potential, and injected electron density of NMOS at various temperatures are extracted and analyzed. When the Drain, Source, and Body are all grounded, the distributions of the electrostatic field at various temperatures are extracted and analyzed. The distribution of electric potential in NMOS indicates that the voltage drop on the Drain-Body junction (VDB) is affected by ambient temperature significantly, and the variation of VDB dominates the variation trend of VH with temperature increasing. The reducing electrostatic field and increasing injected electron density with temperature decreasing contribute to the decreasing of VDB. The trend of IH and parasitic Body resistance (RBody) weakens the temperature dependence of the VH. The current gain of parasitic bipolar transistor (β) decreases with ambient temperature rising, which is the main contributor to the decreasing of IH. Therefore, increasing IH and RBody is helpful in reducing the temperature dependence of the latch-immune ESD protection structure.
      通信作者: 李晓静, lixiaojing1@ime.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61804168)资助的课题.
      Corresponding author: Li Xiao-Jing, lixiaojing1@ime.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61804168).
    [1]

    Bafleur M, Caignet F, Nolhier N, 2017 ESD Protection Methodologies (Amsterdam, Holland: Elsevier) xvii

    [2]

    Vinson J E, Liou J J 1998 Proc. IEEE 86 399Google Scholar

    [3]

    Duvvury C, Amerasekera A 1993 Proc. IEEE 81 690Google Scholar

    [4]

    Ker M D 1999 IEEE Trans. Electron. Devices 46 173Google Scholar

    [5]

    Ker M D, Hsu C K 2005 IEEE Trans. Device Mater. Reliab. 5 235Google Scholar

    [6]

    Voldman S H 2008 LATCHUP (Hoboken, New Jersey: John Wiley & Sons) p1

    [7]

    Boselli G, Duvvury C 2005 Microelectron. Reliab. 45 1406Google Scholar

    [8]

    Voldman S H 2005 Microelectron. Reliab. 45 437Google Scholar

    [9]

    Wang A 2002 On-chip ESD Protection for Integrated Circuits: An IC Design Perspective (Boston, MA: Springer) p1

    [10]

    Ker M, Wu C Y, Chang H H 1996 IEEE Trans. Electron. Devices 43 588Google Scholar

    [11]

    Li C, Zhang F, Wang C K, Chen Q, Lu F, Wang H, Di M F, Cheng Y H, Zhao H J, Wang A 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China 2018 p743

    [12]

    Wang J X, Li X J, Zhao F Z, Zeng C B, Li D L, Li L C, Li J J, Li B, Han Z S, Luo J J 2021 Chin. Phys. B 30 078501Google Scholar

    [13]

    Wang J X, Zhao F Z, Ni T, Li D L, G L C, Wang J J, Li X J, Zeng C B, Luo J J, Han Z S 2021 Microelectron. Reliab. 126 114239Google Scholar

    [14]

    Tazzoli A, Marino F A, Cordoni M, Benvenuti A, Colombo P, Zanoni E, Meneghesso G 2007 Microelectron. Reliab. 47 1444Google Scholar

    [15]

    Won J I, Lee H D, Lee K Y, Kim K D, Koo Y S 2009 IEEE Region 10 Conference 2009 Singapore, 2009 p2553

    [16]

    Jang S L, Lin S L 2000 Solid-State Electron. 44 2139Google Scholar

    [17]

    Liang W, Dong A, Li H, Miao M, Kuo C C, Klebanov M, Liou J J 2016 Microelectron. Reliab. 66 46Google Scholar

    [18]

    Meneghesso G, Tazzoli A, Marino F A, Cordoni M, Colombo P 2008 46 th Annual IEEE International Reliability Physics Symposium Phoenix 2008 p3

    [19]

    Hou F, Liu J Z, Liu Z W, Huang W, Gong T X, Liou J J 2019 IEEE Trans. Electron Devices 66 2044Google Scholar

    [20]

    Do K I, Jin H S, Lee B S, Koo Y S 2021 IEEE J. Electron Devices Soc. 9 1017Google Scholar

    [21]

    Wu M, Lu W Z, Zhang C C, Peng W, Zeng Y, Jin H, Xu J, Chen Z J 2020 Semicond. Sci. Technol. 35 045016Google Scholar

    [22]

    Li S S 1978 Solid-State Electron. 21 1109Google Scholar

    [23]

    Khanna V K 2017 Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (Boca Raton: CRC Press)

  • 图 1  不同温度下GTNMOS的ESD I-V曲线. 插图为曲线维持处的细节

    Fig. 1.  The ESD I-V curves of NMOS under different temperatures. Insert: the detail in holding points.

    图 2  不同温度下, (a) GTNMOS和(b) GGNMOS的TCAD仿真ESD I-V曲线, 插图为曲线维持处的细节

    Fig. 2.  The TCAD simulated ESD I-V curves of (a) GTNMOS and (b) GGNMOS under different temperatures, where the insert is the detail in holding points.

    图 3  不同温度下GTNMOS的TLP测试结果与TCAD仿真结果对比

    Fig. 3.  The TLP tested holding voltage and TCAD simulated holding voltage under various ambient temperatures.

    图 4  PDSOI NMOS器件截面图及作为ESD防护器件工作时的工作机制示意图

    Fig. 4.  Cross-sectional view and the equivalent circuit of the PDSOI NMOS.

    图 5  施加相同ESD电流脉冲的GGNMOS在不同温度下静电势分布

    Fig. 5.  Electrostatic potential distributions of GGNMOS under various ambient temperatures when the Drain is subject to the same ESD current pulsing. The Source and the Body are grounded.

    图 6  施加相同ESD电流脉冲的GGNMOS在不同温度下的源-体界面位置 (沿Path 1路径) 的静电势分布曲线

    Fig. 6.  Electrostatic potential distributions in the drain-body surface of GGNMOS along path 1 under various ambient temperatures when the drain is subject to the same ESD current pulsing. The Source and the Body are grounded.

    图 7  不施加ESD电流脉冲的GGNMOS在不同温度下的电场分布

    Fig. 7.  Electric field distributions of GGNMOS under various ambient temperatures when the drain, the source and the body are grounded.

    图 8  施加相同ESD电流脉冲的GGNMOS在不同温度下的电子浓度分布

    Fig. 8.  Electron density distributions of GGNMOS under various temperatures when the drain is subjected to the same ESD current pulsing. The source and the body are grounded.

    图 9  施加相同ESD电流脉冲的GGNMOS在不同温度下的源-体结界面位置 (沿Path 2路径) 的静电势分布

    Fig. 9.  Electrostatic Potential distributions in the drain-source surface of GGNMOS along path 2 under various temperatures when the Drain is subjected to the same ESD current pulsing. The Source and the Body are grounded.

    图 10  施加相同ESD电流脉冲的GGNMOS在不同温度下的电流密度分布

    Fig. 10.  Current density distributions of GGNMOS under various temperatures when the drain is subjected to the same ESD current pulsing. The Source and the Body are grounded.

    Baidu
  • [1]

    Bafleur M, Caignet F, Nolhier N, 2017 ESD Protection Methodologies (Amsterdam, Holland: Elsevier) xvii

    [2]

    Vinson J E, Liou J J 1998 Proc. IEEE 86 399Google Scholar

    [3]

    Duvvury C, Amerasekera A 1993 Proc. IEEE 81 690Google Scholar

    [4]

    Ker M D 1999 IEEE Trans. Electron. Devices 46 173Google Scholar

    [5]

    Ker M D, Hsu C K 2005 IEEE Trans. Device Mater. Reliab. 5 235Google Scholar

    [6]

    Voldman S H 2008 LATCHUP (Hoboken, New Jersey: John Wiley & Sons) p1

    [7]

    Boselli G, Duvvury C 2005 Microelectron. Reliab. 45 1406Google Scholar

    [8]

    Voldman S H 2005 Microelectron. Reliab. 45 437Google Scholar

    [9]

    Wang A 2002 On-chip ESD Protection for Integrated Circuits: An IC Design Perspective (Boston, MA: Springer) p1

    [10]

    Ker M, Wu C Y, Chang H H 1996 IEEE Trans. Electron. Devices 43 588Google Scholar

    [11]

    Li C, Zhang F, Wang C K, Chen Q, Lu F, Wang H, Di M F, Cheng Y H, Zhao H J, Wang A 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT) Qingdao, China 2018 p743

    [12]

    Wang J X, Li X J, Zhao F Z, Zeng C B, Li D L, Li L C, Li J J, Li B, Han Z S, Luo J J 2021 Chin. Phys. B 30 078501Google Scholar

    [13]

    Wang J X, Zhao F Z, Ni T, Li D L, G L C, Wang J J, Li X J, Zeng C B, Luo J J, Han Z S 2021 Microelectron. Reliab. 126 114239Google Scholar

    [14]

    Tazzoli A, Marino F A, Cordoni M, Benvenuti A, Colombo P, Zanoni E, Meneghesso G 2007 Microelectron. Reliab. 47 1444Google Scholar

    [15]

    Won J I, Lee H D, Lee K Y, Kim K D, Koo Y S 2009 IEEE Region 10 Conference 2009 Singapore, 2009 p2553

    [16]

    Jang S L, Lin S L 2000 Solid-State Electron. 44 2139Google Scholar

    [17]

    Liang W, Dong A, Li H, Miao M, Kuo C C, Klebanov M, Liou J J 2016 Microelectron. Reliab. 66 46Google Scholar

    [18]

    Meneghesso G, Tazzoli A, Marino F A, Cordoni M, Colombo P 2008 46 th Annual IEEE International Reliability Physics Symposium Phoenix 2008 p3

    [19]

    Hou F, Liu J Z, Liu Z W, Huang W, Gong T X, Liou J J 2019 IEEE Trans. Electron Devices 66 2044Google Scholar

    [20]

    Do K I, Jin H S, Lee B S, Koo Y S 2021 IEEE J. Electron Devices Soc. 9 1017Google Scholar

    [21]

    Wu M, Lu W Z, Zhang C C, Peng W, Zeng Y, Jin H, Xu J, Chen Z J 2020 Semicond. Sci. Technol. 35 045016Google Scholar

    [22]

    Li S S 1978 Solid-State Electron. 21 1109Google Scholar

    [23]

    Khanna V K 2017 Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (Boca Raton: CRC Press)

计量
  • 文章访问数:  6665
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-24
  • 修回日期:  2022-03-09
  • 上网日期:  2022-06-11
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map