搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

$ {\text{N}}_{2}^{+} $分子离子$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{\text{2}}}{{\Pi}_{\text{u}}} $$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $态的不透明度

陈晨 赵国鹏 祁月盈 吴勇 王建国

引用本文:
Citation:

$ {\text{N}}_{2}^{+} $分子离子$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{\text{2}}}{{\Pi}_{\text{u}}} $$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $态的不透明度

陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国

Molecular opacities of $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ states of nitrogen cation

Chen Chen, Zhao Guo-Peng, Qi Yue-Ying, Wu Yong, Wang Jian-Guo
PDF
HTML
导出引用
  • 本文采用考虑了Davidson修正的内收缩多参考组态相互作用(icMRCI)方法, 计算了$ {\text{N}}_{2}^{+} $体系的$ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $,$ {{\rm{A}}^{2}}{\Pi }_{\rm{u}}$$ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $电子态的势能曲线、光谱常数和偶极跃迁矩阵元. 根据计算的分子结构数据, 给出了配分函数, 并模拟了压强在100 atm (1 atm=1×105 Pa)的条件下, 温度分别为295, 500, 1000, 2000, 2500, 5000和10000 K的不透明度. 结果表明, 由于激发态的布居数随着温度的升高逐渐增多, 不透明度分布的波长范围逐渐增大, 并且不同谱带的分界线也逐渐变得模糊. 本工作中计算的$ {\text{N}}_{2}^{+} $分子离子不透明度, 还在相同压强和温度条件下与其中性分子不透明度进行了对比,发现无论是波长分布范围还是峰值结构都存在显著差异. 本工作系统分析了温度效应对氮气分子离子不透明度的影响, 可以为天体物理领域提供理论和数据支持.
    The potential curves, spectroscopic constants and dipole moments for $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, A2Πu and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ state of $ {\text{N}}_{2}^{+} $ are calculated by the internal contraction multi reference configuration interaction (icMRCI) method, with Davidson correction taken into consideration. According to the results of molecular structures, we present the partition function in a temperature range of 100–40000 K and the opacities at different temperatures (295, 500, 1000, 2000, 2500, 5000 and 10000 K) under a fixed pressure of 100 atm. It is found that the populations of excited states increase with temperature increasing, as a result, the wavelength range of opacity also increases and band boundaries for different transitions gradually become obscure. In comparison with the cases of N2 with the same pressure and temperature, significant discrepancies are found in the wavelength ranges and structures of opacity of $ {\text{N}}_{2}^{+} $ for the present work. The influence of temperature on the opacity of $ {\text{N}}_{2}^{+} $ is studied systematically in the present work, which is expected to provide theoretical and data support for astrophysics.
      通信作者: 赵国鹏, guopengzhao@zjxu.edu.cn ; 祁月盈, yying_qi@zjxu.edu.cn ; 吴勇, wu_yong@iapcm.ac.cn
    • 基金项目: 国家重点研发计划 (批准号: 2017YFA0403200)和国家自然科学基金 (批准号: 12105119)资助的课题.
      Corresponding author: Zhao Guo-Peng, guopengzhao@zjxu.edu.cn ; Qi Yue-Ying, yying_qi@zjxu.edu.cn ; Wu Yong, wu_yong@iapcm.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403200) and the National Natural Science Foundation of China (Grant No. 12105119).
    [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

  • 图 1  $ {\rm{N}}_{2}^{+} $$ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $, $ {{\rm{A}}^{2}}{{{\Pi }}_{\rm{u}}} $$ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $态的势能曲线

    Fig. 1.  Potential energy curves for the $ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $, $ {{\rm{A}}^{2}}{{{\Pi }}_{\rm{u}}} $ and $ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $ states of $ {\rm{N}}_{2}^{+} $.

    图 2  $ {\text{N}}_{\text{2}}^{\text{ + }} $的偶极跃迁矩阵元随核间距的变化关系

    Fig. 2.  Transition dipole moments of $ {\text{N}}_{\text{2}}^{\text{ + }} $ as a function of internuclear distance R.

    图 3  $ {\text{N}}_{\text{2}}^{\text{ + }} $的配分函数

    Fig. 3.  The partition functions of $ {\text{N}}_{\text{2}}^{\text{ + }} $.

    图 4  压强为100 atm时, $ {\text{N}}_{\text{2}}^{\text{ + }} $(黑线)和$ {{\text{N}}_2} $(红线)[45] 在不同温度下的不透明度 (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    Fig. 4.  Opacities of $ {\text{N}}_{\text{2}}^{\text{ + }} $ (black line) and $ {{\text{N}}_2} $ (red line) [45] at different temperatures under pressure of 100 atm, (a) 295 K, (b) 500 K, (c) 1000 K, (d) 2000 K.

    图 5  压强为100 atm时, $ {\text{N}}_{\text{2}}^{\text{ + }} $(黑线)和$ {{\text{N}}_2} $(红线)[45] 在不同温度下的不透明度 (a) 2500 K, (b) 5000 K, (c) 10000 K.

    Fig. 5.  Opacities of $ {\text{N}}_{\text{2}}^{\text{ + }} $ (black line) and $ {{\text{N}}_2} $ (red line) [45] at different temperatures under pressure of 100 atm, (a) 2500 K, (b) 5000 K, (c) 10000 K.

    表 1  $ {\rm{N}}_{{2}}^{{+}} $分子离子$ {{\rm{X}}^{{2}}}{\Sigma}_{\rm{g}}^{{+}} $, $ {{\rm{A}}^{{2}}}{{\Pi}_{\rm{u}}} $$ {{\rm{B}}^{{2}}}{\Sigma}_{\rm{u}}^{{+}} $的振动能级间隔(单位: cm–1).

    Table 1.  Vibration energy level intervals for $ {{\text{X}}^{2}}{\Sigma}_{\text{g}}^{+} $, $ {{\text{A}}^{2}}{{\Pi}_{\text{u}}} $ and $ {{\text{B}}^{2}}{\Sigma}_{\text{u}}^{+} $ state of $ {\text{N}}_{2}^{+} $ (in cm–1).

    $ \nu $$ {{\rm{X}}^{2}}{\Sigma}_{\rm{g}}^{+} $$ {{\rm{A}}^{2}}{{\Pi}_{\rm{u}}} $$ {{\rm{B}}^{2}}{\Sigma}_{\rm{u}}^{+} $
    This workExperiment[18]This workExperiment[18]This workExperiment[18]
    12160.202186.31860.801873.12350.812371.5
    22127.692131.81830.131843.22296.852318.8
    32095.202118.81800.421813.32236.542260.4
    42062.182054.01770.501783.72169.602196.4
    52028.652057.71740.202095.352122.8
    61994.382003.61710.162008.012041.0
    71960.151977.91680.471904.721951.1
    81926.841940.71650.761790.501838.2
    91893.061903.81621.041671.731726.9
    101856.931870.91591.271553.841596.7
    111818.041835.81561.571441.301479.9
    121776.201800.61531.561339.771371.4
    131733.591764.71501.571251.041276.3
    141693.161733.51471.761175.431196.3
    151657.081684.31442.161111.181126.6
    161625.931655.81412.801053.801067.1
    171597.901616.31383.511002.491015.5
    181570.431576.81354.06955.83966.0
    191541.511537.31324.26913.25922.0
    201510.091497.81294.02873.37882.0
    下载: 导出CSV

    表 2  ${\text{N}}_2^+$的光谱常数.

    Table 2.  Spectroscopic constants of $\rm N_2^+$.

    StateSource ${R_{\rm{e}}}$/Å${T_{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${\omega _{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${B_{\rm{e}}}$/$ {{\rm c}}{{{\rm m}}^{{{ - }}1}} $${D_{\rm{e}}}$/eV
    ${ { {\rm X} }^{2} }{{\Sigma}}_{ {\rm g} }^{+}$This work1.119102196.23241.92278.7145
    Expt.[18]1.11602207.001.93198.7128
    Theory[51]1.17020758.4
    Theory[52]1.10601.97
    Theory[53]1.12012193.41.919
    Theory[54]1.120321951.917
    Theory[55]1.11892204.51.924
    Theory[56]1.126102140
    Theory[57]1.122185
    ${ { {\rm A} }^{2} }{ { {\Pi } }_{ {\rm u} } }$This work1.17778911.19351890.34121.73587.6096
    Expt.[18]1.1779016.41903.531.7487.5948
    Theory[51]1.2614517.9716936.7
    Theory[52]1.16590161.773
    Theory[53]1.17811898.01.735
    Theory[54]1.176219181.739
    Theory[55]1.17721900.11.737
    Theory[56]1.18758872.101850
    Theory[57]1.1771911
    ${ { \rm {B} }^{2} }{\Sigma}_{ {\rm u} }^{+}$This work1.077225861.7412398.85912.07525.5273
    Expt.[18]1.07725566.02419.842.0735.5428
    Theory[51]1.1630649.0618054.6
    Theory[52]1.075255662.084
    Theory[58]1.0832258232441.8
    Theory[54]1.077624252.072
     Theory[56]1.083825325.802370
    下载: 导出CSV
    Baidu
  • [1]

    Cravens T E, Robertson I P, Waite J H, Yelle R V, Kasprzak W T, Keller C N, Ledvina S A, Niemann H B, Luhmann J G, McNutt R L, Ip W H, Haya V D L, Wodarg M, Wahlund J E, Anicich V G, Vuitton V 2006 Geophys. Res. Lett. 33 L07105Google Scholar

    [2]

    Dutuit O, Carrasco N, Thissen R, Vuitton V, Alcaraz C, Pernot P, Lavvas P 2013 Astrophys. J. Suppl. Ser. 204 20Google Scholar

    [3]

    Scherf M, Lammer H, Erkaev N V, Mandt K E, Thaller S E, Marty B 2020 Space Sci. Rev. 216 1Google Scholar

    [4]

    Bruna P J, Grein F 2008 J. Mol. Spectrosc. 250 75Google Scholar

    [5]

    Erkaev N V, Scherf M, Thaller S E, Lammer H, Mezentsev A V, Ivanov V A, Mandt K E 2021 Mon. Not. R. Astron. Soc. 500 2020Google Scholar

    [6]

    Opitom C, Hutsemékers D, Jehin E, Rousselot P, Pozuelos F J, Manfroid J, Moulane Y, Gillon M, Benkhaldoun Z 2019 Astron. Astrophys. 624 A64Google Scholar

    [7]

    Jenniskens P, Laux C O, Schaller E L 2004 Astrobiology 4 109Google Scholar

    [8]

    Abe S, Ebizuka N, Yano H, Watanabe J I, Borovička J 2005 Astrophys. J. 618 L141Google Scholar

    [9]

    Ho W C, Jäger W, Cramb D C, Ozier I, Gerry M C L 1992 J. Mol. Spectrosc. 153 692Google Scholar

    [10]

    Shi D H, Xing W, Sun J F, Zhu Z L, Liu Y F 2011 Comput. Theor. Chem. 966 44Google Scholar

    [11]

    Huffman R E, Larrabee J C, Tanaka Y 1964 Disc. Faraday Soc. 37 159Google Scholar

    [12]

    Bruna P J, Grein F 2004 J. Mol. Spectrosc. 227 67Google Scholar

    [13]

    Sinhal M 2021 Ph. D. Dissertation (Basel: University of Basel)

    [14]

    Fassbender M 1924 Z. Phys. 30 73

    [15]

    Childs W H J 1932 Proc. Roy. Soc. 137 641Google Scholar

    [16]

    Meinel A B 1950 Astrophys. J. 112 562Google Scholar

    [17]

    Dalby F W, Douglas A E 1951 Phys. Rev. 84 843Google Scholar

    [18]

    Lofthus A, Krupenie P H 1977 J. Phys. Chem Ref. Data 6 113Google Scholar

    [19]

    Dick K A, Benesch W, Crosswhite H M, Tilford S G, Gottscho R A, Field R W 1978 J. Mol. Spectrosc. 69 95Google Scholar

    [20]

    Gudeman C S, Saykally R J 1984 Annu. Rev. Phys. Chem. 35 387Google Scholar

    [21]

    Miller T A, Suzuki T, Hirota E 1984 J. Chem. Phys. 80 4671Google Scholar

    [22]

    Wu S H, Chen Y Q, Zhuang H, Yang X H, Bi Z Y, Ma L S, L Y Y 2001 J. Mol. Spectrosc. 209 133Google Scholar

    [23]

    Moon S Y, Choe W 2003 Spectrochim. Acta Part B 58 249Google Scholar

    [24]

    Zhang Y P, Deng L H, Zhang J, Chen Y Q 2015 Chin. J. Chem. Phys. 28 134Google Scholar

    [25]

    Nishiyama T, Taguchi M, Suzuki H, Dalin P, Ogawa Y, Brandstron U, Sakanoi T 2021 Earth Planets Space 73 30Google Scholar

    [26]

    Chauveau S, Perrin M Y, Riviere P, Soufiani A 2002 J. Quant. Spectrosc. Radiat. Transfer 72 503Google Scholar

    [27]

    Yan B, Feng W 2010 Chin. Phys. B 19 033303Google Scholar

    [28]

    Peyrou B, Chemartin L, Lalande P, Chéron B G, Riviere P, Perrin M Y, Soufiani A 2012 J. Phys. D:Appl. Phys. 45 455203Google Scholar

    [29]

    Liu H, Shi D H, Wang S, Sun J F, Zhu Z L 2014 J. Quant. Spectrosc. Radiat. Transfer 147 207Google Scholar

    [30]

    Qin Z, Zhao J M, Liu L H 2017 J. Quant. Spectrosc. Radiat. Transfer 202 2Google Scholar

    [31]

    Liang R H, Liu Y M, Li F Y 2021 Phys. Scr. 96 125402Google Scholar

    [32]

    Liang R H, Liu Y M, Li F Y 2021 Contrib. Plasma Phys. 61 e2021000366Google Scholar

    [33]

    Liang R H, Liu Y M, Li F Y 2021 J. Appl. Phys. 130 063303Google Scholar

    [34]

    马文, 靳奉涛, 袁建民 2007 56 5709Google Scholar

    Ma W, Jin F T, Yuan J M 2007 Acta Phys. Sin. 56 5709Google Scholar

    [35]

    Lin X H, Liang G Y, Wang J G, Peng Y G, Shao B, Li R, Wu Y 2019 Chin. Phys. B 28 053101Google Scholar

    [36]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. B 29 023101Google Scholar

    [37]

    Liang G Y, Peng Y G, Li R, Wu Y, Wang J G 2020 Chin. Phys. Lett. 37 123101Google Scholar

    [38]

    Li R, Liang G Y, Lin X H, Zhu Y H, Zhao S T, Wu Y 2019 Chin. Phys. B 28 043102Google Scholar

    [39]

    Xu X S, Dai A Q, Peng Y G, Wu Y, Wang J G 2018 J. Quant. Spectrosc. Radiat. Transfer 206 172Google Scholar

    [40]

    Slipher V M 1933 Mon. Not. R. Astron. Soc. 93 657Google Scholar

    [41]

    Feldman P D 1973 J. Geophys. Res. 78 2010Google Scholar

    [42]

    Langhoff S R, Bauschlicher C W 1988 J. Chem. Phys. 88 329Google Scholar

    [43]

    Langhoff S R, Bauschlicher C W, Partridge H 1987 J. Chem. Phys. 87 4716Google Scholar

    [44]

    Weck P F, Schweitzer A, Kirby K, Hauschildt P H, Stancil P C 2004 Astrophys J. 613 567Google Scholar

    [45]

    陈晨,赵国鹏,祁月盈,吴勇,王建国 2022 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [46]

    Woon D E, Dunning T H. 1995 J. Chem. Phys. 103 4572Google Scholar

    [47]

    Werner H J and Meyer W 1980 J. Chem. Phys. 73 2342Google Scholar

    [48]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [49]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [50]

    Werner H J, Knowles P J, Manby F R, Schütz M, Celani P, Knizia G, Korona T, Lindh R, Mitrushenkov A, Rauhut G 2010 MOLPRO: a Package of ab initio Programs

    [51]

    Thulstrup E W, Andersen A 1975 J. Phys. B:Atom. Mol. Phys. 8 965Google Scholar

    [52]

    Zhang Y, Hanson D M 1986 Chem. Phys. Lett. 127 33Google Scholar

    [53]

    Berning A, Werner H J 1994 J. Chem. Phys. 100 1953Google Scholar

    [54]

    Li X Z, Paldus J 2000 Mol. Phys. 98 1185Google Scholar

    [55]

    Spelsberg D, Meyer W 2001 J. Chem. Phys. 115 6438Google Scholar

    [56]

    Bruna P J, Grein F 2008 J. Molecular Spectroscopy 250 75

    [57]

    Li X Z, Paldus J 2009 Phys. Chem. Chem. Phys. 11 5281Google Scholar

    [58]

    Langhoff S R, Bauschlicher Jr C W 1988 J. Chemical Physics 88 329

    [59]

    Bernath P F, Dalgarno A 1996 Phys. Today 49 94

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质.  , 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [2] 陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国. 氮气分子${X^1}\Sigma _{\rm{g}}^ + ,{a^\prime }^1\Sigma _{\rm{u}}^ - ,{a^1}{\Pi _{\rm{g}}} \text{和} { b}^1\Pi_{\rm u} $电子态的不透明度.  , 2022, 71(14): 143102. doi: 10.7498/aps.71.20220043
    [3] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [4] 魏长立, 廖浩, 罗太盛, 任银拴, 闫冰. Na2+离子较低电子态势能曲线和光谱常数的理论研究.  , 2018, 67(24): 243101. doi: 10.7498/aps.67.20181690
    [5] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数.  , 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [6] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质.  , 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [7] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数.  , 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究.  , 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [10] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究.  , 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [11] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [13] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [14] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [15] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [16] 王新强, 杨传路, 苏涛, 王美山. BH分子基态和激发态解析势能函数和光谱性质.  , 2009, 58(10): 6873-6878. doi: 10.7498/aps.58.6873
    [17] 施德恒, 刘玉芳, 孙金锋, 张金平, 朱遵略. 基态O和D原子的低能弹性碰撞及OD(X2Π)自由基的准确解析势与分子常数.  , 2009, 58(4): 2369-2375. doi: 10.7498/aps.58.2369
    [18] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [19] 张继彦, 杨家敏, 许 琰, 杨国洪, 颜 君, 孟广为, 丁耀南, 汪 艳. 辐射加热Al等离子体的吸收谱实验.  , 2008, 57(2): 985-989. doi: 10.7498/aps.57.985
    [20] 王藩侯, 陈敬平, 孟续军, 周显明, 李西军, 孙永盛, 经福谦. 冲击压缩产生的氩等离子体辐射不透明度研究.  , 2001, 50(7): 1308-1312. doi: 10.7498/aps.50.1308
计量
  • 文章访问数:  4123
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 修回日期:  2022-05-18
  • 上网日期:  2022-10-03
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map