搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓相图预测及其高压熔化特性研究

雷振帅 孙小伟 刘子江 宋婷 田俊红

引用本文:
Citation:

氮化镓相图预测及其高压熔化特性研究

雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红

Phase diagram prediction and high pressure melting characteristics of GaN

Lei Zhen-Shuai, Sun Xiao-Wei, Liu Zi-Jiang, Song Ting, Tian Jun-Hong
PDF
HTML
导出引用
  • 采用经典分子动力学模拟, 结合第一性原理计算及晶格动力学方法对氮化镓(GaN)纤锌矿结构与岩盐结构在 0—80 GPa压力范围内的相图进行了预测. 第一性原理计算与分子动力学模拟得到的零温下 GaN纤锌矿到岩盐结构的相变压力分别为 44.3 GPa 和 45.9 GPa, 与已有研究的实验结果吻合; 通过外推纤锌矿结构 GaN的熔化曲线得到其零压下的熔化温度为 2295 K, 当压力增大到33.3 GPa 时, 纤锌矿结构熔化曲线与岩盐结构熔化曲线相交, 两种结构的熔化温度均随压力的增大而上升; GaN还可能存在超离子相, 纤锌矿结构在压力大于2.0 GPa 且温度高于 2550 K时发生超离子相转变, 岩盐结构在压力温度大于 33.1 GPa 和 4182 K 后发生超离子相转变, 二者的相转变温度均会随着压力的增大而升高; GaN纤锌矿和岩盐结构的相界线并非为一直线, 在高温下相界线斜率为正, 随着温度的降低逐渐变为一条具有负斜率的曲线.
    The III-V compound semiconductor, GaN, has become an excellent semiconductor material for developing the high-frequency and high-power electronic devices because of its excellent characteristics, including large band width, high thermal conductivity and fast electron saturation rate, and has received extensive attention in recent years. However, the decomposition temperature of GaN is lower than the melting temperature, some of its fundamental properties, such as melting temperature and high temperature phase transition pressure, are still unclear, and so, now the investigation of fundamental properties dominates the whole process of this material from development to mature applications. In the present work, the classical molecular dynamics simulations combined with the first-principles calculations and lattice dynamics methods are adopted to predict the phase diagrams of GaN with wurtzite and rocksalt structures in a pressure range of 0–80 GPa. The phase transition pressures, 44.3 GPa and 45.9 GPa, obtained from the first-principles calculations and molecular dynamics simulations from wurtzite to rocksalt structure in GaN at zero temperature, are in agreement with the available experimental results (Sadovyi B, et al. 2020 Phys. Rev. B 102 235109). The melting temperature at 0 GPa is 2295 K obtained by extrapolating the GaN melting curve of the wurtzite structure. With the pressure increasing to 33.3 GPa, the melting curve of wurtzite structure in GaN intersects with the melting curve of rocksalt structure, and the melting temperatures of both structures increase with pressure increasing. It is found that GaN may have a superionic phase and the superionic phase transition occurs in the wurtzite structure at pressures greater than 2.0 GPa and temperatures above 2550 K, whereas the rocksalt structure undergoes a superionic phase transition at pressures and temperatures higher than 33.1 GPa and 4182 K, respectively, and both of the phase transition temperatures increase with pressure increasing. The slope of the phase boundary line of GaN is positive at high temperatures and gradually changes into a curve with a negative slope as the temperature decreases.
      通信作者: 孙小伟, sunxw_lzjtu@yeah.net
    • 基金项目: 甘肃省自然科学基金重点项目(批准号: 20JR5RA427)和甘肃省重点人才项目(批准号: 2020RCXM100)资助的课题.
      Corresponding author: Sun Xiao-Wei, sunxw_lzjtu@yeah.net
    • Funds: Project supported by the Key Natural Science Foundation of Gansu Province (Grant No. 20JR5RA427) and the Key Talent Foundation of Gansu Province, China (Grant No. 2020RCXM100).
    [1]

    Abdul Amir H A A, Fakhri M A, Abdulkhaleq Alwahib A 2021 Mater. Today Proc. 42 2815Google Scholar

    [2]

    Van Vechten J A 1973 Phys. Rev. B 7 1479Google Scholar

    [3]

    Zhou Y, Wang S F, Wang R, Jiang N 2013 Physica B 431 115Google Scholar

    [4]

    Sadovyi B, Wierzbowska M, Stelmakh S, Boccato S, Gierlotka S, Irifune T, Porowski S, Grzegory I 2020 Phys. Rev. B 102 235109Google Scholar

    [5]

    Utsumi W, Saitoh H, Kaneko H, Watanuki T, Aoki K, Shimomura O 2003 Nat. Mater. 2 735Google Scholar

    [6]

    Harafuji K, Tsuchiya T, Kawamura K 2004 J. Appl. Phys. 96 2501Google Scholar

    [7]

    Karpiński J, Jun J, Porowski S 1984 J. Cryst. Growth 66 1Google Scholar

    [8]

    Xia H, Xia Q, Ruoff A L 1993 Phys. Rev. B 47 12925Google Scholar

    [9]

    Novikov S V, Zainal N, Akimov A V, Staddon C R, Kent A J, Foxon C T 2010 J. Vac. Sci. Technol. B 28 C3B1Google Scholar

    [10]

    Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K 1994 Phys. Rev. B 49 14Google Scholar

    [11]

    Saoud F S, Plenet J C, Louail L, Maouche D 2011 Comput. Theor. Chem. 964 65Google Scholar

    [12]

    Sokol A G, Palyanov Y N, Surovtsev N V 2007 Diam. Relat. Mater. 16 431Google Scholar

    [13]

    Saitoh H, Utsumi W, Kaneko H, Aoki K 2007 J. Cryst. Growth 300 26Google Scholar

    [14]

    Porowski S, Sadovyi B, Gierlotka S, Rzoska S J, Grzegory I, Petrusha I, Turkevich V, Stratiichuk D 2015 J. Phys. Chem. Solids 85 138Google Scholar

    [15]

    Nord J, Albe K, Erhart P, Nordlund K 2003 J. Phys. Condens. Matter 15 5649Google Scholar

    [16]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [17]

    Kioseoglou J, Polatoglou H M, Lymperakis L, Nouet G, Komninou P 2003 Comp. Mater. Sci. 27 43Google Scholar

    [18]

    Béré A, Serra A 2006 Philos. Mag. 86 2159Google Scholar

    [19]

    Do E C, Shin Y H, Lee B J 2009 J. Phys. :Condens. Matter 21 325801Google Scholar

    [20]

    Zapol P, Pandey R, Gale J D 1997 J. Phys. :Condens. Matter 9 9517Google Scholar

    [21]

    Zhang S, Chen N X 2005 Chem. Phys. 309 309Google Scholar

    [22]

    Born M, Mayer J E 1932 Z. Physik 75 1Google Scholar

    [23]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [27]

    Gale J D, Rohl A L 2003 Mol. Simulat. 29 291Google Scholar

    [28]

    Pandey R, Jaffe J E, Harrison N M 1994 J. Phys. Chem. Solids 55 1357Google Scholar

    [29]

    Kirchner V, Heinke H, Hommel D, Domagala J Z, Leszczynski M 2000 Appl. Phys. Lett. 77 1434Google Scholar

    [30]

    Adachi K, Ogi H, Nagakubo A, Nakamura N, Hirao M, Imade M, Yoshimura M, Mori Y 2016 J. Appl. Phys. 119 245111Google Scholar

    [31]

    Polian A, Grimsditch M, Grzegory I 1996 J. Appl. Phys. 79 3343Google Scholar

    [32]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [33]

    Zou Y C, Xiang S K, Dai C D 2020 Comp. Mater. Sci. 171 109156Google Scholar

    [34]

    Hazarika M P, Chakraborty S N 2019 Chem. Phys. Lett. 730 521Google Scholar

    [35]

    Liu C M, Xu C, Cheng Y, Chen X R, Cai L C 2015 J. Appl. Phys. 118 235901Google Scholar

    [36]

    Wang S C, Zhang G M, Liu H F, Song H F 2013 J. Chem. Phys. 138 134101Google Scholar

    [37]

    Cazorla C, Errandonea D 2013 J. Phys. Chem. C 117 11292

    [38]

    Porowski S, Sadovyi B, Karbovnyk I, Gierlotka S, Rzoska S J, Petrusha I, Stratiichuk D, Turkevich V, Grzegory I 2019 J. Cryst. Growth 505 5Google Scholar

    [39]

    孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民 2005 54 5830Google Scholar

    Sun X W, Chu Y D, Liu Z J, Liu Y X, Wang C W, Liu W M 2005 Acta Phys. Sin. 54 5830Google Scholar

    [40]

    Saitta A M, Decremps F 2004 Phys. Rev. B 70 035214Google Scholar

    [41]

    Perlin P, Jauberthie-Carillon C, Itie J P, San Miguel A, Grzegory I I, Polian A 1992 Phys. Rev. B 45 83Google Scholar

    [42]

    Christensen N E, Gorczyca I I 1994 Phys. Rev. B 50 4397

    [43]

    Muñoz A, Kunc K 1994 Comp. Mater. Sci. 2 400Google Scholar

  • 图 1  GaN 电子局域函数图 (a) 纤锌矿结构(110)晶面; (b) 岩盐结构(100)晶面

    Fig. 1.  Electron localization function of GaN (a) wurtzite structure (110) and (b) rocksalt structure (100) crystal planes.

    图 2  GaN 纤锌矿和岩盐结构在 300 K 下的体积比率与已有结果对比, 所有数据均归一化至纤锌矿结构初始体积, 红色与黑色圆点为分子动力学模拟结果(实线为拟合曲线); 蓝色正三角形与绿色菱形分别为 Xia 等[8]与 Ueno 等[10]的X射线衍射实验结果; 洋红色虚线为 Pandey 等[28]的从头算结果

    Fig. 2.  The volume ratios of GaN with wurtzite and rocksalt structures at 300 K are compared with existing results, all data are normalized to the initial volume of the wurtzite GaN, the red and black dots are the molecular dynamics simulations results (solid line is the fitted curve). The green diamond and blue square triangle are the X-ray diffraction experimental results by Ueno et al.[10] and Xia et al.[8], respectively. The magenta dashed line is the ab initio result by Pandey et al.[28].

    图 3  处于两相共存状态的 GaN 体系

    Fig. 3.  GaN system in the two-phase coexistence state.

    图 4  两相共存状态下 GaN 体系沿 z 轴方向的原子数密度

    Fig. 4.  Atomic number density along the z-direction of the GaN system in the two-phase coexistence state.

    图 5  压力为 10 GPa 时, GaN 在不同温度下的 Ga 原子与 N 原子的均方位移, 内插图为总览图

    Fig. 5.  Mean square displacement of the Ga and N atoms with different temperatures for GaN at 10 GPa, in which the inset is a general view.

    图 6  压力为 10 GPa, 温度为 4000 K 时的 GaN 原子构型, 体系已经处于超离子相 (a) 原始构型; (b) Ga 原子亚晶格; (c) N 原子亚晶格

    Fig. 6.  GaN in superionic state at 10 GPa and 4000 K (a) original configuration, (b) Ga and (c) N atomic sublattices.

    图 7  GaN纤锌矿结构熔化温度的已有研究结果与本文计算结果的对比

    Fig. 7.  Comparison between existing results on the melting temperature of GaN wurtzite structures and the results calculated in this paper.

    图 8  第一性原理计算得到的 GaN 纤锌矿、闪锌矿与岩盐三种结构的相对焓, 内插图为放大的相对焓交点

    Fig. 8.  Relative enthalpies of GaN with wurtzite, zincblende, and rocksalt structures are calculated by first-principles calculations, and the interpolation shows the enlarged relative enthalpies intersection.

    图 9  GaN纤锌矿与岩盐结构固-固相界线的已有数据与本文计算结果的对比

    Fig. 9.  Comparison of the existing solid-solid phase boundary results of GaN with wurtzite and rocksalt structures with the results calculated in this paper.

    图 10  GaN 0—80 GPa 压力范围内的 P-T 相图, 图中的所有点均为分子动力学模拟值, 黑色和红色线为 GaN纤锌矿结构、岩盐结构熔化温度的拟合曲线; 海蓝色与紫色线为 GaN纤锌矿超离子相、岩盐超离子相的转变边界拟合曲线; 蓝色、绿色与橙色点线分别为 GaN纤锌矿超离子相-岩盐超离子相、纤锌矿超离子相-固态岩盐结构、固态纤锌矿结构-固态岩盐结构的相转变边界

    Fig. 10.  P-T phase diagram of GaN in the pressure range of 0–80 GPa, WZ and RS are used to denote the wurtzite and rocksalt structures of GaN in the diagram. All points are molecular dynamics simulations values in the diagram, the black and red lines are the fitted curves of melting temperature of the GaN with wurtzite and rocksalt structures. The navy blue and purple lines are the fitted curves of phase transition boundary of wurtzite superionic and rocksalt superionic for GaN. The blue, green and orange dotted lines are the phase transition boundary of GaN with wurtzite phase superionic-rocksalt phase superionic, wurtzite phase superionic-rocksalt solid and wurtzite solid-rocksalt solid, respectively.

    表 1  GaN的 Morse 势参数与本文拟合得到的 Born-Mayer 势参数

    Table 1.  The Morse potential parameters and fitted Born-Mayer potential parameters of GaN.

    原子对势函数类型D/eVγRA/eVηZ=|Zi|=|Zj|rcut
    Ga-NMorse[21]4.55176.47641.69310.63 e10
    Ga-GaBorn-Mayer227.07150.4614
    N-NBorn-Mayer531.52810.5157
    下载: 导出CSV

    表 2  GaN纤锌矿与岩盐结构在零压下的晶格常数, 弹性常数 Cij, 体积模量 B 及晶格能 E

    Table 2.  The lattice constants, elastic constants Cij, bulk modulus B and lattice energy E of GaN with wurtzite and rocksalt structures at zero pressure.

    纤锌矿结构岩盐结构
    DFTLDRef.DFTLDRef.
    a3.2253.2043.188[29]4.2784.2334.278[3]
    c5.2535.1025.183[29]
    C11/GPa326.8400.3360.7[30]323.4292.8
    C12/GPa114.7164.6115.4[30]203.7267.9
    C44/GPa88.9118.9100.1[30]159.4267.9
    C13/GPa82.1136.4103.7[30]
    C33/GPa362.4384.4393.8[30]
    B/GPa174.9228.6210.0[31]214.1276.2248.0[8]
    E/(eV/f.u.)–2.18–4.35–2.17[3]–1.23–3.41–1.36[3]
    下载: 导出CSV

    表 3  GaN P-T 相图中三相共存点的位置

    Table 3.  Location of three-phase coexistence points in GaN P-T phase diagram.

    三相共存点压力/GPa温度/K
    P133.34557
    P22.02550
    P333.14182
    P436.23800
    下载: 导出CSV
    Baidu
  • [1]

    Abdul Amir H A A, Fakhri M A, Abdulkhaleq Alwahib A 2021 Mater. Today Proc. 42 2815Google Scholar

    [2]

    Van Vechten J A 1973 Phys. Rev. B 7 1479Google Scholar

    [3]

    Zhou Y, Wang S F, Wang R, Jiang N 2013 Physica B 431 115Google Scholar

    [4]

    Sadovyi B, Wierzbowska M, Stelmakh S, Boccato S, Gierlotka S, Irifune T, Porowski S, Grzegory I 2020 Phys. Rev. B 102 235109Google Scholar

    [5]

    Utsumi W, Saitoh H, Kaneko H, Watanuki T, Aoki K, Shimomura O 2003 Nat. Mater. 2 735Google Scholar

    [6]

    Harafuji K, Tsuchiya T, Kawamura K 2004 J. Appl. Phys. 96 2501Google Scholar

    [7]

    Karpiński J, Jun J, Porowski S 1984 J. Cryst. Growth 66 1Google Scholar

    [8]

    Xia H, Xia Q, Ruoff A L 1993 Phys. Rev. B 47 12925Google Scholar

    [9]

    Novikov S V, Zainal N, Akimov A V, Staddon C R, Kent A J, Foxon C T 2010 J. Vac. Sci. Technol. B 28 C3B1Google Scholar

    [10]

    Ueno M, Yoshida M, Onodera A, Shimomura O, Takemura K 1994 Phys. Rev. B 49 14Google Scholar

    [11]

    Saoud F S, Plenet J C, Louail L, Maouche D 2011 Comput. Theor. Chem. 964 65Google Scholar

    [12]

    Sokol A G, Palyanov Y N, Surovtsev N V 2007 Diam. Relat. Mater. 16 431Google Scholar

    [13]

    Saitoh H, Utsumi W, Kaneko H, Aoki K 2007 J. Cryst. Growth 300 26Google Scholar

    [14]

    Porowski S, Sadovyi B, Gierlotka S, Rzoska S J, Grzegory I, Petrusha I, Turkevich V, Stratiichuk D 2015 J. Phys. Chem. Solids 85 138Google Scholar

    [15]

    Nord J, Albe K, Erhart P, Nordlund K 2003 J. Phys. Condens. Matter 15 5649Google Scholar

    [16]

    Alder B J, Wainwright T E 1957 J. Chem. Phys. 27 1208Google Scholar

    [17]

    Kioseoglou J, Polatoglou H M, Lymperakis L, Nouet G, Komninou P 2003 Comp. Mater. Sci. 27 43Google Scholar

    [18]

    Béré A, Serra A 2006 Philos. Mag. 86 2159Google Scholar

    [19]

    Do E C, Shin Y H, Lee B J 2009 J. Phys. :Condens. Matter 21 325801Google Scholar

    [20]

    Zapol P, Pandey R, Gale J D 1997 J. Phys. :Condens. Matter 9 9517Google Scholar

    [21]

    Zhang S, Chen N X 2005 Chem. Phys. 309 309Google Scholar

    [22]

    Born M, Mayer J E 1932 Z. Physik 75 1Google Scholar

    [23]

    Fischer T H, Almlof J 1992 J. Phys. Chem. 96 9768Google Scholar

    [24]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892Google Scholar

    [26]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I, Refson K, Payne M C 2005 Z. Kristallogr. 220 567

    [27]

    Gale J D, Rohl A L 2003 Mol. Simulat. 29 291Google Scholar

    [28]

    Pandey R, Jaffe J E, Harrison N M 1994 J. Phys. Chem. Solids 55 1357Google Scholar

    [29]

    Kirchner V, Heinke H, Hommel D, Domagala J Z, Leszczynski M 2000 Appl. Phys. Lett. 77 1434Google Scholar

    [30]

    Adachi K, Ogi H, Nagakubo A, Nakamura N, Hirao M, Imade M, Yoshimura M, Mori Y 2016 J. Appl. Phys. 119 245111Google Scholar

    [31]

    Polian A, Grimsditch M, Grzegory I 1996 J. Appl. Phys. 79 3343Google Scholar

    [32]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [33]

    Zou Y C, Xiang S K, Dai C D 2020 Comp. Mater. Sci. 171 109156Google Scholar

    [34]

    Hazarika M P, Chakraborty S N 2019 Chem. Phys. Lett. 730 521Google Scholar

    [35]

    Liu C M, Xu C, Cheng Y, Chen X R, Cai L C 2015 J. Appl. Phys. 118 235901Google Scholar

    [36]

    Wang S C, Zhang G M, Liu H F, Song H F 2013 J. Chem. Phys. 138 134101Google Scholar

    [37]

    Cazorla C, Errandonea D 2013 J. Phys. Chem. C 117 11292

    [38]

    Porowski S, Sadovyi B, Karbovnyk I, Gierlotka S, Rzoska S J, Petrusha I, Stratiichuk D, Turkevich V, Grzegory I 2019 J. Cryst. Growth 505 5Google Scholar

    [39]

    孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民 2005 54 5830Google Scholar

    Sun X W, Chu Y D, Liu Z J, Liu Y X, Wang C W, Liu W M 2005 Acta Phys. Sin. 54 5830Google Scholar

    [40]

    Saitta A M, Decremps F 2004 Phys. Rev. B 70 035214Google Scholar

    [41]

    Perlin P, Jauberthie-Carillon C, Itie J P, San Miguel A, Grzegory I I, Polian A 1992 Phys. Rev. B 45 83Google Scholar

    [42]

    Christensen N E, Gorczyca I I 1994 Phys. Rev. B 50 4397

    [43]

    Muñoz A, Kunc K 1994 Comp. Mater. Sci. 2 400Google Scholar

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响.  , 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟.  , 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [3] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究.  , 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [4] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟.  , 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [5] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [6] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究.  , 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [7] 孙春峰. 镶嵌正方晶格上Gauss模型的相图.  , 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [8] 王卫东, 郝跃, 纪翔, 易成龙, 牛翔宇. 不同温度条件下单层石墨烯纳米带弛豫性能的分子动力学研究.  , 2012, 61(20): 200207. doi: 10.7498/aps.61.200207
    [9] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响.  , 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [10] 夏冬, 王新强. 超细Pt纳米线结构和熔化行为的分子动力学模拟研究.  , 2012, 61(13): 130510. doi: 10.7498/aps.61.130510
    [11] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法.  , 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [12] 谢红献, 于涛, 刘波. 温度对镍基单晶高温合金γ/γ'相界面上错配位错运动影响的分子动力学研究.  , 2011, 60(4): 046104. doi: 10.7498/aps.60.046104
    [13] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [14] 林 洁, 刘绍军, 李融武, 祝文军. 自由能方法与零压下Al的熔化温度.  , 2008, 57(1): 61-66. doi: 10.7498/aps.57.61
    [15] 郭宝增, 宫 娜, 师建英, 王志宇. 纤锌矿相GaN空穴输运特性的Monte Carlo模拟研究.  , 2006, 55(5): 2470-2475. doi: 10.7498/aps.55.2470
    [16] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [17] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响.  , 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [18] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图.  , 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [19] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟.  , 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [20] 王 进, 赵志刚, 刘 楣, 邢定钰. 磁通格子的有序-无序相变和反向熔化.  , 2003, 52(12): 3162-3167. doi: 10.7498/aps.52.3162
计量
  • 文章访问数:  5498
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-06-14
  • 上网日期:  2022-09-28
  • 刊出日期:  2022-10-05

/

返回文章
返回
Baidu
map