-
采用改进的连续小波变换对一组人工触发闪电的回击过程光学辐射信号进行了色散特性分析, 并与经典R-L-C传输线模型的计算结果进行了对比. 结果表明, 回击过程光学辐射信号不同频率分量的到达时间随频率的增加具有非线性变化; 在不同频率分量的到达时间曲线上, 低频段均出现了一个转折频率, 并且转折频率的大小通常在10—25 kHz之间. 该转折频率的存在为评估回击通道特性和电导率提供了一类新的参数化依据, 据此估算了此次触发闪电六次回击过程的通道电导率, 平均变化范围为(0.59—0.96) × 104 S/m, 总体平均值约为0.77 × 104 S/m, 与经典评估结果相似.In this paper, improved continuous wavelet transform is used to analyze the dispersion characteristics of a group of optical radiation signals of return stroke in an artificially triggered lightning, and the analysis results are compared with the results calculated by the classical R-L-C transmission line model. The analysis results show that the arrival time of different frequency components of the optical radiation of return stroke presents nonlinear variation with frequency. Moreover, a turning point always appears in the low frequency band on the arrival time curves of different frequency components, and the turning frequency is usually between 10 kHz and 25 kHz. The existence of this turning frequency provides a new kind of parameterization basis for evaluating the characteristic and conductivity of the return stroke channel. Based on this, the channel conductivities of the six return strokes of this triggered lightning are estimated. The average variation ranges from 0.59 × 104 S/m to 0.96 × 104 S/m, and the overall average value is about 0.77 × 104 S/m, which are similar to the classical evaluation results.
-
Keywords:
- time-frequency analysis /
- return stroke /
- dispersion /
- channel conductivity
[1] Liang C, Carlson B, Lehtinen N, Cohen M, Marshall R A, Inan U 2014 Geophys. Res. Lett. 41 2561Google Scholar
[2] Cai S, Chen M, Du Y, Qin Z 2017 J. Geophys. Res. Atmos. 122 8686Google Scholar
[3] 唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 69 189201Google Scholar
Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar
[4] 李书磊, 邱实, 石立华, 李云, 段艳涛 2019 68 165202Google Scholar
Li S L, Qiu S, Shi L H, Li Y, Duan Y T 2019 Acta Phys. Sin. 68 165202Google Scholar
[5] Heidler F H 2019 IEEE Trans. Electromagn. Compat. 61 644Google Scholar
[6] Hoole P R P, Hoole S R H 1988 IEEE Trans. Magn. 24 3165Google Scholar
[7] Wang D H, Takagi N, Gamerota W R, Uman M A, Hill J D, Jordan D M 2013 J. Geophys. Res. Atmos. 118 9880Google Scholar
[8] Liu L, Yang S Y, Ni G Z, Huang J 2014 IEEE Trans. Magn. 50 149Google Scholar
[9] Ratnamahilan P, Hoole P R P 1993 IEEE Trans. Magn. 29 1839Google Scholar
[10] Schonland B F J, Malan D J, Collens H 1935 Proc. R. Soc. London 152 595
[11] Schonland B F J 1956 Hand. Phys. 22 576
[12] Idone V P, Orville R E 1982 J. Geophys. Res. 87 4903Google Scholar
[13] Wang D H, Takagi N, Watanabe T, Rakov V A, Uman M A 1999 J. Geophys. Res. 104 14369Google Scholar
[14] Wang D H, Takagi N, Uman M A, Jordan D M 2016 J. Geophys. Res. Atmos. 121 14612Google Scholar
[15] Olsen R C, Rakov V A, Jordan D M, Jerauld J, Uman M A, Rambo K J 2006 J. Geophys. Res. 111 D13202Google Scholar
[16] Saba M M F, Schulz W, Warner T A, Campos L Z S, Schumann C, Krider E P, Cummins K L, Orville R E 2010 J. Geophys. Res. 115 D24201
[17] Tran M D, Rakov V A 2016 Sci. Rep. 6 39521Google Scholar
[18] Olsen R C, Jordan D M, Rakov V A, Uman M A, Grimes N 2004 Geophys. Res. Lett. 31 L16107Google Scholar
[19] Jordan D M, Uman M A 1983 J. Geophys. Res. 88 6555Google Scholar
[20] Carvalho F L, Uman M A, Jordan D M, Ngin T 2015 J. Geophys. Res. Atmos. 120 10645
[21] Wang D H, Takagi N, Liu X, Watanabe T, Chihara A 2004 Geophys. Res. Lett. 31 L02111
[22] Kawasaki Z, Nakano M, Takeuti T 1987 Trans. Inst. Electr. Eng. Jpn. 107 47Google Scholar
[23] Carvalho F L, Uman M A, Jordan D M, Moore R C 2017 J. Geophys. Res. Atmos. 122 2334Google Scholar
[24] Rakov V A 1998 J. Geophys. Res. 103 1879Google Scholar
[25] Li Y C, Zhang Q, Luo X J, Si Q, Ran Y Z, Wang J B, Fu S C, Sun Z, Shi L H 2021 IEEE Trans. Electromagn. Compat. 63 1146Google Scholar
[26] Huang L Y, Zhang Q, Wang J B, Duan Y T, Chen H L, Shi L H, Gao C 2020 IEEE Trans. Electromagn. Compat. 62 324Google Scholar
[27] Li Y, Qiu S, Shi L H, Wang T, Zhang Q, Lei Q, Sun Z 2018 Geophys. Res. Lett. 45 569
[28] Taylor A R 1965 J. Geophys. Res. 70 5693Google Scholar
[29] Oetzel G N 1968 J. Geophys. Res. 73 1889Google Scholar
[30] An T T, Yuan P, Chen R R, Zhang N, Wan R B, Zhang M, Liu G R 2021 J. Geophys. Res. Atmos. 126 105851
[31] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[32] 王雪娟, 袁萍, 岑建勇, 王杰, 张廷龙 2013 光谱学与光谱分析 33 3192Google Scholar
Wang X J, Yuan P, Cen J Y, Wang J, Zhang T L 2013 Spectrosc. Spect. Anal. 33 3192Google Scholar
[33] 赵金翠, 袁萍, 岑建勇, 李亚珺, 王 杰 2015 光谱学与光谱分析 35 1474Google Scholar
Zhao J C, Yuan P, Cen J Y, Li Y J, Wang J 2015 Spectrosc. Spect. Anal. 35 1474Google Scholar
-
图 3 第三次回击中S8通道分析结果 (a) S8通道不同频率分量百分比; (b)传统CWT时频分析结果; (c)改进CWT时频分析结果; (d)回击和先导光辐射信号的归一化时频图; (e)回击光辐射信号不同频率分量到达时间散点图, 插图为50 kHz以下的散点图
Fig. 3. The results of channel S8 of RS3: (a) Energy percentage of the frequency components of channel S8; (b) time-frequency analysis results calculated by traditional CWT method; (c) time-frequency analysis results calculated by improved CWT method; (d) normalized time-frequency graph of the return stroke and the leader optical radiation signal; (e) scatter plot of arrival time of different frequency components of the return stroke optical radiation signal. The inset is the expanded scatter plot below 50 kHz.
表 1 传输线模型计算的通道特征参数
Table 1. Channel characteristic parameters calculated by the TL model.
序号 转折频率/kHz R/(Ω·m–1) σ/(104 S·m–1) 1 141.25 3.5 0.09 2 79.43 2.0 0.16 3 39.81 1.0 0.32 4 19.95 0.5 0.64 5 12.02 0.3 1.06 表 2 实测数据的通道特征参数
Table 2. Channel characteristics of the observed results.
回击 S5通道 S6通道 S7通道 S8通道 电导率平均值/104 转折频率/kHz σ/(104 S·m–1) 转折频率/kHz σ/(104 S·m–1) 转折频率/kHz σ/(104 S·m–1) 转折频率/kHz σ/(104 S·m–1) RS1 17.5 0.72 17 0.74 16.7 0.76 16.5 0.76 0.75 RS2 19 0.67 18.7 0.68 18.6 0.68 19.1 0.66 0.67 RS3 14 0.90 13 0.97 16 0.79 18 0.70 0.84 RS4 12.2 1.03 13.6 0.92 13.7 0.92 13 0.97 0.96 RS5 21 0.60 20 0.63 22.5 0.56 23 0.55 0.59 RS6 16.5 0.76 16 0.79 15.7 0.80 15.5 0.81 0.79 电导率平均值 — — — — — — — — 0.77 -
[1] Liang C, Carlson B, Lehtinen N, Cohen M, Marshall R A, Inan U 2014 Geophys. Res. Lett. 41 2561Google Scholar
[2] Cai S, Chen M, Du Y, Qin Z 2017 J. Geophys. Res. Atmos. 122 8686Google Scholar
[3] 唐国瑛, 孙竹玲, 蒋如斌, 李丰全, 刘明远, 刘昆, 郄秀书 2020 69 189201Google Scholar
Tang G Y, Sun Z L, Jiang R B, Li F Q, Liu M Y, Liu K, Qie X S 2020 Acta Phys. Sin. 69 189201Google Scholar
[4] 李书磊, 邱实, 石立华, 李云, 段艳涛 2019 68 165202Google Scholar
Li S L, Qiu S, Shi L H, Li Y, Duan Y T 2019 Acta Phys. Sin. 68 165202Google Scholar
[5] Heidler F H 2019 IEEE Trans. Electromagn. Compat. 61 644Google Scholar
[6] Hoole P R P, Hoole S R H 1988 IEEE Trans. Magn. 24 3165Google Scholar
[7] Wang D H, Takagi N, Gamerota W R, Uman M A, Hill J D, Jordan D M 2013 J. Geophys. Res. Atmos. 118 9880Google Scholar
[8] Liu L, Yang S Y, Ni G Z, Huang J 2014 IEEE Trans. Magn. 50 149Google Scholar
[9] Ratnamahilan P, Hoole P R P 1993 IEEE Trans. Magn. 29 1839Google Scholar
[10] Schonland B F J, Malan D J, Collens H 1935 Proc. R. Soc. London 152 595
[11] Schonland B F J 1956 Hand. Phys. 22 576
[12] Idone V P, Orville R E 1982 J. Geophys. Res. 87 4903Google Scholar
[13] Wang D H, Takagi N, Watanabe T, Rakov V A, Uman M A 1999 J. Geophys. Res. 104 14369Google Scholar
[14] Wang D H, Takagi N, Uman M A, Jordan D M 2016 J. Geophys. Res. Atmos. 121 14612Google Scholar
[15] Olsen R C, Rakov V A, Jordan D M, Jerauld J, Uman M A, Rambo K J 2006 J. Geophys. Res. 111 D13202Google Scholar
[16] Saba M M F, Schulz W, Warner T A, Campos L Z S, Schumann C, Krider E P, Cummins K L, Orville R E 2010 J. Geophys. Res. 115 D24201
[17] Tran M D, Rakov V A 2016 Sci. Rep. 6 39521Google Scholar
[18] Olsen R C, Jordan D M, Rakov V A, Uman M A, Grimes N 2004 Geophys. Res. Lett. 31 L16107Google Scholar
[19] Jordan D M, Uman M A 1983 J. Geophys. Res. 88 6555Google Scholar
[20] Carvalho F L, Uman M A, Jordan D M, Ngin T 2015 J. Geophys. Res. Atmos. 120 10645
[21] Wang D H, Takagi N, Liu X, Watanabe T, Chihara A 2004 Geophys. Res. Lett. 31 L02111
[22] Kawasaki Z, Nakano M, Takeuti T 1987 Trans. Inst. Electr. Eng. Jpn. 107 47Google Scholar
[23] Carvalho F L, Uman M A, Jordan D M, Moore R C 2017 J. Geophys. Res. Atmos. 122 2334Google Scholar
[24] Rakov V A 1998 J. Geophys. Res. 103 1879Google Scholar
[25] Li Y C, Zhang Q, Luo X J, Si Q, Ran Y Z, Wang J B, Fu S C, Sun Z, Shi L H 2021 IEEE Trans. Electromagn. Compat. 63 1146Google Scholar
[26] Huang L Y, Zhang Q, Wang J B, Duan Y T, Chen H L, Shi L H, Gao C 2020 IEEE Trans. Electromagn. Compat. 62 324Google Scholar
[27] Li Y, Qiu S, Shi L H, Wang T, Zhang Q, Lei Q, Sun Z 2018 Geophys. Res. Lett. 45 569
[28] Taylor A R 1965 J. Geophys. Res. 70 5693Google Scholar
[29] Oetzel G N 1968 J. Geophys. Res. 73 1889Google Scholar
[30] An T T, Yuan P, Chen R R, Zhang N, Wan R B, Zhang M, Liu G R 2021 J. Geophys. Res. Atmos. 126 105851
[31] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 62 109201Google Scholar
Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar
[32] 王雪娟, 袁萍, 岑建勇, 王杰, 张廷龙 2013 光谱学与光谱分析 33 3192Google Scholar
Wang X J, Yuan P, Cen J Y, Wang J, Zhang T L 2013 Spectrosc. Spect. Anal. 33 3192Google Scholar
[33] 赵金翠, 袁萍, 岑建勇, 李亚珺, 王 杰 2015 光谱学与光谱分析 35 1474Google Scholar
Zhao J C, Yuan P, Cen J Y, Li Y J, Wang J 2015 Spectrosc. Spect. Anal. 35 1474Google Scholar
计量
- 文章访问数: 3461
- PDF下载量: 54
- 被引次数: 0