-
With the rapid increase of the thermal power density of microelectronic devices and circuits, controlling its temperature has become an urgent need for the development and application of the electronic industry. By virtue of the ultrahigh thermal conductivity of graphene, developing high-performance graphene-based composite thermal interface materials has attracted much research attention and become one of hot research topics. The understanding of phonon transport mechanism in graphene-based composites at atomic scale can be helpful to enhance the heat conductive capability of composites systems. In this review, focused on graphene-based thermal interfaces materials, the heat conduction mechanism and the regulating strategy are introduced on both the internal thermal resistance and interfacial thermal resistance. Finally, the reseach progress and opportunities for future studies are also summarized.
-
Keywords:
- thermal interfacial material /
- graphene composite /
- thermal conductivity /
- phonon coupling
[1] 孙蓉 2019 集成技术 8 1
Google Scholar
Sun R 2019 J. Ind. Inf. Integration 8 1
Google Scholar
[2] Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1
[3] Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31
[4] Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331
Google Scholar
[5] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1
Google Scholar
[6] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031
Google Scholar
[7] Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401
Google Scholar
[8] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401
Google Scholar
[9] Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401
Google Scholar
[10] Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502
Google Scholar
[11] 吴祥水, 汤雯婷, 徐象繁 2020 69 196602
Google Scholar
Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602
Google Scholar
[12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[13] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[14] Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584
Google Scholar
[15] Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901
Google Scholar
[16] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704
Google Scholar
[17] Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544
Google Scholar
[18] Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003
Google Scholar
[19] Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062
Google Scholar
[20] Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577
Google Scholar
[21] An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690
Google Scholar
[22] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[23] Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4
[24] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305
Google Scholar
[25] 潘东楷, 宗志成, 杨诺 2022 71 086302
Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302
Google Scholar
[26] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805
Google Scholar
[27] Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432
Google Scholar
[28] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
Google Scholar
[29] Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049
Google Scholar
[30] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
[31] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301
Google Scholar
[32] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002
Google Scholar
[33] Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303
Google Scholar
[34] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857
Google Scholar
[35] Lin S, Buehler M J 2013 Nanotechnology 24 165702
Google Scholar
[36] Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123
Google Scholar
[37] Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949
Google Scholar
[38] Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414
Google Scholar
[39] Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731
Google Scholar
[40] Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393
Google Scholar
[41] Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283
Google Scholar
[42] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093
Google Scholar
[43] Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725
Google Scholar
[44] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48
Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139
Google Scholar
[46] Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001
Google Scholar
[47] Hao Q, Garg J 2021 ES Mater. Manuf. 14 36
[48] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248
[49] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53
Google Scholar
[50] Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302
Google Scholar
[51] Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007
Google Scholar
[52] Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994
Google Scholar
[53] Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254
Google Scholar
[54] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305
Google Scholar
[55] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387
Google Scholar
[56] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445
Google Scholar
[57] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024
[58] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428
Google Scholar
[59] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342
Google Scholar
[60] Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295
Google Scholar
[61] Zhang L, Liu L 2019 Nanoscale 11 3656
Google Scholar
[62] Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495
Google Scholar
[63] Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502
Google Scholar
[64] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92
Google Scholar
[65] Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946
Google Scholar
[66] Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150
Google Scholar
[67] Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585
Google Scholar
[68] Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214
Google Scholar
[69] Wu X, Luo T 2014 J. Appl. Phys. 115 014901
Google Scholar
[70] Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502
Google Scholar
[71] Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102
Google Scholar
[72] Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107
Google Scholar
[73] Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102
Google Scholar
[74] Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306
Google Scholar
[75] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901
Google Scholar
[76] Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359
Google Scholar
-
图 2 (a) 石墨烯基复合体系中石墨烯面内振动(黑色箭头)和面外振动(红色箭头); (b) 复合体系中石墨烯内非平衡声子群温度; (c) 复合体系中界面石墨烯的面内振动(黑色箭头)和面外振动(红色箭头); (d) 界面石墨烯的非平衡声子温度
Fig. 2. (a), (c) The schematic diagram of two types of graphene-based composites where in-plane (out-of-plane) phonon group is denoted as black arrow (red arrow); (b), (d) the temperature distribution of in-plane phonon group, out-of-plane phonon group in graphene and polymer.
图 3 (a) 面内异质结构和(c)范德瓦耳斯界面原子模型; (b) 面内异质界面和(d)范德瓦耳斯界面在沿热流方向的温度分布, 其中左边系统声子群A和B均对系统导热有贡献且存在非平衡现象, 右边系统仅有一种声子群
Fig. 3. (a) The atomic structure models of in-plane heterointerface and (c) van der Waals heterointerfaces;the temperature distribution of phonon group A(b), TA, left, phonon group B(d), TB, left in the left region and phonon group Tright in right region.
-
[1] 孙蓉 2019 集成技术 8 1
Google Scholar
Sun R 2019 J. Ind. Inf. Integration 8 1
Google Scholar
[2] Yu W, Liu C, Qiu L, Zhang P, Ma W, Yue Y, Xie H, Larkin L S 2018 Eng. Sci. 2 1
[3] Liu C, Chen M, Yu W, He Y 2018 ES Energy Environ. 2 31
[4] Shahil K M F, Balandin A A 2012 Solid State Commun. 152 1331
Google Scholar
[5] Huang C, Qian X, Yang R 2018 Mater. Sci. Eng. R Rep. 132 1
Google Scholar
[6] Xu Y, Wang X, Zhou J, Song B, Jiang Z, Lee E M Y, Huberman S, Gleason K K, Chen G 2018 Sci. Adv. 4 eaar3031
Google Scholar
[7] Xi Q, Zhong J, He J, Xu X, Nakayama T, Wang Y, Liu J, Zhou J, Li B 2020 Chin. Phys. Lett. 37 104401
Google Scholar
[8] Yu X, Ma D, Deng C, Wan X, An M, Meng H, Li X, Huang X, Yang N 2021 Chin. Phy. Lett. 38 014401
Google Scholar
[9] Chang Z, Yuan K, Sun Z, Zhang X, Gao Y, Gong X, Tang D 2021 Chin. Phys. B 30 034401
Google Scholar
[10] Ma D, Li X, Zhang L 2020 Chin. Phys. B 29 126502
Google Scholar
[11] 吴祥水, 汤雯婷, 徐象繁 2020 69 196602
Google Scholar
Wu X S, Tang W T, Xu X F 2020 Acta Phys. Sin. 69 196602
Google Scholar
[12] Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902
Google Scholar
[13] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689
Google Scholar
[14] Li P, Liu Y, Shi S, Xu Z, Ma W, Wang Z, Liu S, Gao C 2020 Adv. Funct. Mater. 30 2006584
Google Scholar
[15] Gao J, Xie D, Wang X, Zhang X, Yue Y 2020 Appl. Phys. Lett. 117 251901
Google Scholar
[16] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater. 30 1904704
Google Scholar
[17] Xu X, Chen J, Zhou J, Li B 2018 Adv. Mater. 30 e1705544
Google Scholar
[18] Lewis J S, Perrier T, Barani Z, Kargar F, Balandin A A 2021 Nanotechnology 32 142003
Google Scholar
[19] Yan Q, Alam F E, Gao J, Dai W, Tan X, Lv L, Wang J, Zhang H, Chen D, Nishimura K, Wang L, Yu J, Lu J, Sun R, Xiang R, Maruyama S, Zhang H, Wu S, Jiang N, Lin CT 2021 Adv. Funct. Mater. 31 2104062
Google Scholar
[20] Huang X, Zhi C, Lin Y, Bao H, Wu G, Jiang P, Mai Y-W 2020 Mat. Sci. Eng. R 142 100577
Google Scholar
[21] An M, Wang H, Yuan Y, Chen D, Ma W, Sharshir S W, Zheng Z, Zhao Y, Zhang X 2022 Surf. Interfaces 28 101690
Google Scholar
[22] Xu Y, Wang X, Hao Q 2021 Compos. Commun. 24 100617
Google Scholar
[23] Zhou Y, Wu S, Long Y, Zhu P, Wu F, Liu F, Murugadoss V, Winchester W, Nautiyal A, Wang Z, Guo Z 2020 ES Mater. Manuf. 7 4
[24] Deng C, Huang Y, An M, Yang N 2021 Mater. Today Phys. 16 100305
Google Scholar
[25] 潘东楷, 宗志成, 杨诺 2022 71 086302
Google Scholar
Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302
Google Scholar
[26] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B, Yang N 2017 Nano Lett. 17 5805
Google Scholar
[27] Vallabhaneni A K, Singh D, Bao H, Murthy J, Ruan X 2016 Phys. Rev. B 93 125432
Google Scholar
[28] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
Google Scholar
[29] Sullivan S, Vallabhaneni A, Kholmanov I, Ruan X, Murthy J, Shi L 2017 Nano lett. 17 2049
Google Scholar
[30] Feng T, Yao W, Wang Z, Shi J, Li C, Cao B, Ruan X 2017 Phys. Rev. B 95 195202
[31] Feng T, Zhong Y, Shi J, Ruan X 2019 Phys. Rev. B 99 045301
Google Scholar
[32] Chen J, Xu X, Zhou J, Li B 2022 Rev. Mod. Phys. 94 025002
Google Scholar
[33] Huang Y, Feng W, Yu X, Deng C, Yang N 2020 Chin. Phys. B 29 126303
Google Scholar
[34] Giri A, Hopkins P E 2020 Adv. Funct. Mater. 30 1903857
Google Scholar
[35] Lin S, Buehler M J 2013 Nanotechnology 24 165702
Google Scholar
[36] Wang M, Galpaya D, Lai Z B, Xu Y, Yan C 2014 Int. J. Smart Nano Mat. 5 123
Google Scholar
[37] Zhang L, Liu L 2017 ACS Appl. Mater. Interfaces 9 28949
Google Scholar
[38] Wang M, Hu N, Zhou L, Yan C 2015 Carbon 85 414
Google Scholar
[39] Wang Y, Zhan H F, Xiang Y, Yang C, Wang C M, Zhang Y Y 2015 J. Phys. Chem. C 119 12731
Google Scholar
[40] Liu C, Yu W, Chen C, Xie H, Cao B 2020 Inter. J. Heat Mass Trans. 163 120393
Google Scholar
[41] Wei X, Zhang T, Luo T 2017 ACS Energy Lett. 2 2283
Google Scholar
[42] Sun F, Zhang T, Jobbins M M, Guo Z, Zhang X, Zheng Z, Tang D, Ptasinska S, Luo T 2014 Adv. Mater. 26 6093
Google Scholar
[43] Qiu L, Guo P, Kong Q, Tan C W, Liang K, Wei J, Tey J N, Feng Y, Zhang X, Tay B K 2019 Carbon 145 725
Google Scholar
[44] Zhang Y, Ma D, Zang Y, Wang X, Yang N 2018 Front. Energy Res. 6 48
Google Scholar
[45] Xiong Y, Yu X, Huang Y, Yang J, Li L, Yang N, Xu D 2019 Mater. Today Phys. 11 100139
Google Scholar
[46] Ma D, Zhang G, Zhang L 2020 J. Phys. DAppl. Phys. 53 434001
Google Scholar
[47] Hao Q, Garg J 2021 ES Mater. Manuf. 14 36
[48] Wang S, Xu D, Gurunathan R, Snyder G J, Hao Q 2020 J. Mater. 6 248
[49] Xu D, Hanus R, Xiao Y, Wang S, Snyder G J, Hao Q 2018 Mater. Today Phys. 6 53
Google Scholar
[50] Ma D, Zhao Y, Zhang L 2021 J. Appl. Phys. 129 175302
Google Scholar
[51] Xiong G, Wang J-S, Ma D, Zhang L 2020 EPL 128 54007
Google Scholar
[52] Zhou Y, Zhang X, Hu M 2016 Nanoscale 8 1994
Google Scholar
[53] Rastgarkafshgarkolaei R, Zhang J, Polanco C A, Le N Q, Ghosh A W, Norris P M 2019 Nanoscale 11 6254
Google Scholar
[54] Yang L, Wan X, Ma D, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305
Google Scholar
[55] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C, Yang N 2019 Nano Lett. 19 3387
Google Scholar
[56] Wan X, Ma D, Pan D, Yang L, Yang N 2021 Mater. Today Phys. 20 100445
Google Scholar
[57] Ju S, Shiga T, Feng L, Hou Z, Tsuda K, Shiomi J 2017 Phys. Rev. X 7 021024
[58] Roy Chowdhury P, Reynolds C, Garrett A, Feng T, Adiga S P, Ruan X 2020 Nano Energy 69 104428
Google Scholar
[59] Shanker A, Li C, Kim G H, Gidley D, Pipe K P, Kim J 2017 Sci. Adv. 3 e1700342
Google Scholar
[60] Kim G-H, Lee D, Shanker A, Shao L, Kwon M S, Gidley D, Kim J, Pipe K P 2015 Nat. Mater. 14 295
Google Scholar
[61] Zhang L, Liu L 2019 Nanoscale 11 3656
Google Scholar
[62] Luo T, Lloyd J R 2012 Adv. Funct. Mater. 22 2495
Google Scholar
[63] Losego M D, Grady M E, Sottos N R, Cahill D G, Braun P V 2012 Nat. Mater. 11 502
Google Scholar
[64] Mehra N, Mu L, Ji T, Yang X, Kong J, Gu J, Zhu J 2018 Appl. Mater. Today 12 92
Google Scholar
[65] Han H, Mérabia S, Müller-Plathe F 2017 J. Phys. Chem. Lett. 8 1946
Google Scholar
[66] Xiong Y, W H, Gao J, Chen W, Zhang J, Yue Y 2019 Acta Phys. Chim. Sin. 35 1150
Google Scholar
[67] Shen X, Wang Z, Wu Y, Liu X, He Y B, Kim J K 2016 Nano Lett. 16 3585
Google Scholar
[68] Renteria J, Legedza S, Salgado R, Balandin M, Ramirez S, Saadah M, Kargar F, Balandin A 2015 Mater. Design 88 214
Google Scholar
[69] Wu X, Luo T 2014 J. Appl. Phys. 115 014901
Google Scholar
[70] Mann D, Pop E, Cao J, Wang Q, Goodson K 2006 J. Phys. Chem. B 110 1502
Google Scholar
[71] Maassen J, Lundstrom M 2016 J. Appl. Phys. 119 095102
Google Scholar
[72] Lu Z, Shi J, Ruan X 2019 J. Appl. Phys. 125 085107
Google Scholar
[73] Zhong J, Xi Q, Wang Z, Nakayama T, Li X, Liu J, Zhou J 2021 J. App. Phys. 129 195102
Google Scholar
[74] Guo Y, Zhang Z, Bescond M, Xiong S, Nomura M, Volz S 2021 Phys. Rev. B 103 174306
Google Scholar
[75] Cheng Z, Li R, Yan X, Jernigan G, Shi J, Liao M E, Hines N J, Gadre C A, Idrobo J C, Lee E, Hobart K D, Goorsky M S, Pan X, Luo T, Graham S 2021 Nat. Commun. 12 6901
Google Scholar
[76] Mortazavi B, Podryabinkin E V, Roche S, Rabczuk T, Zhuang X, Shapeev A V 2020 Mater. Horiz. 7 2359
Google Scholar
计量
- 文章访问数: 8680
- PDF下载量: 306
- 被引次数: 0