搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EP-FXT聚焦镜真实表面状态的性能模拟方法

祝宇轩 陆景彬 陈勇 王于仨 杨彦佶 韩大炜 崔苇苇 赵晓帆 丛敏 李天明 吕中华 王皓迪

引用本文:
Citation:

EP-FXT聚焦镜真实表面状态的性能模拟方法

祝宇轩, 陆景彬, 陈勇, 王于仨, 杨彦佶, 韩大炜, 崔苇苇, 赵晓帆, 丛敏, 李天明, 吕中华, 王皓迪

Simulation method of performance of X-ray focusing mirror under actual surface state used in FXT on board EP satellite

Zhu Yu-Xuan, Lu Jing-Bin, Chen Yong, Wang Yu-Sa, Yang Yan-Ji, Han Da-Wei, Cui Wei-Wei, Zhao Xiao-Fan, Cong Min, Li Tian-Ming, Lü Zhong-Hua, Wang Hao-Di
PDF
HTML
导出引用
  • 后随X射线望远镜(follow-up X-ray telescope, FXT)是爱因斯坦探针卫星的主要载荷之一. 为了获取高信噪比的数据, 实现对观测天体的高精度定位, FXT使用Wolter-I型X射线聚焦光学系统, 该系统一直是X 射线空间天文观测中的重要设备. 根据Wolter-I型的聚焦原理, 结合实际的加工特点, 利用蒙特卡罗模拟算法对影响光学成像质量的几个关键参量, 如表面粗糙度、面形误差进行了模拟, 结合模拟结果对各参量的作用效果进行了分析. 之后利用PANTER实验室提供的聚焦镜性能测试结果对模拟方法进行了验证, 同时对面形误差参量进行了限制. 最终聚焦镜结构热控件半能量宽度(half energy width, HEW)模拟与实测结果基本一致. 该模拟过程可以很有效地应用于聚焦镜加工工艺的摸索, 为FXT的聚焦镜测试和标定工作提供参考. 结合实测标定数据, 该模拟方法生成的有效面积、渐晕和点扩散函数等可用于在轨观测标定数据库.
    The Follow-up X-ray Telescope (FXT) is one of the main payloads on board the Einstein probe satellite. In order to obtain data with high signal-to-noise ratio and realize high-precision positioning of the sources, FXT adopts the Wolter-I X-ray focusing optical system which has been wildly used in X-ray astronomy. According to the principle of Wolter-I and combining the actual manufacture characteristics, we simulate several key parameters affecting the optical quality by Monte Carlo simulation algorithm, such as surface roughness Root-Mean Square (RMS) and surface profile error. The effect of each parameter is analyzed according to the simulation results. Then, the simulation method is verified by the test results of the focusing mirrors provided by PANTER laboratory, and the surface profile error parameters are restricted. The simulation results of the half energy width of the structural-thermal module mirror are basically consistent with the test results. This method can be effectively applied to the later study of focusing mirror manufacture and can accumulate experience for testing and calibrating FXT focusing mirrors. Furthermore, combining the tested calibration data, some key performance of the mirrors can be obtained by this simulation method, such as the effective area, vignetting and the point spread function, which can compose the on-orbit calibration database.
      通信作者: 陆景彬, ljb@jlu.edu.cn ; 陈勇, ychen@ihep.ac.cn
    • 基金项目: 中国科学院空间科学战略性先导科技专项(批准号: XDA1531010301, XDA15020500)资助的课题
      Corresponding author: Lu Jing-Bin, ljb@jlu.edu.cn ; Chen Yong, ychen@ihep.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program on Space Science, Chinese Academy of Sciences (Grant Nos. XDA1531010301, XDA15020500)
    [1]

    Giacconi R, Branduardi G, Briel U, Epstein A, Fabricant D, Feigelson E, Forman W, Gorenstein P, Grindlay J, Gursky H, Harnden F R, Henry J P, Jones C, Kellogg E, Koch D, Murray S, Schreier E, Seward F, Tananbaum H, Topka K, Van Speybroeck L, Holt S S, Becker R H, Boldt E A, Serlemitsos P J, Clark G, Canizares C, Markert T, Novick R, Helfand D, Long K 1985 Astrophys. J. 230 540Google Scholar

    [2]

    Weisskopf M C, Tananbaum H D, Speybroeck L, O’Dell S L 2000 Proc. SPIE 4012 0277Google Scholar

    [3]

    Jansen F, Lumb D, Altieri B, Clavel J, Ehle M, Gabriel C, Guainazzi M, Gondoin P, Much R, Munoz R, Santos M, Schartel N, Texier D, Vacanti G 2000 Astron. Astrophys. 365 L1-L6Google Scholar

    [4]

    Predehl P 2017 Astron. Nachr. 338 159Google Scholar

    [5]

    Merloni A, Predehl P, Becker W, Bohringer H, Boller T, Brunner H, Brusa M, Dennerl K, Freyberg M, Friedrich P, Georgakakis A, Haberl F, Hasinger G, Meidinger N, Mohr J, Nandra K, Rau A, Reiprich T H, Robrade J, Salvato M, Santangelo A, Sasaki M, Schwope A, Wilms J, German eROSITA Consortium 2012 Casopis Lekaru Ceskych 99 1280Google Scholar

    [6]

    Li T P 2007 Nucl. Phys. B. Proc. Suppl. 166 131Google Scholar

    [7]

    Zhang S N, Li T P, Lu F J, et al. 2020 Sci. Chin.: Phys., Mech. Astron. 63 249502Google Scholar

    [8]

    Yuan W M, Zhang C, Ling Z X, Zhao D H, Wang W X, Chen Y, Lu F J, Zhang S N, Cui W 2018 Proc. SPIE 10699 1069925Google Scholar

    [9]

    Zhang S N, Santangelo A, Feroci M, et al. 2018 Sci. Chin.: Phys., Mech. Astron. 62 029502Google Scholar

    [10]

    强鹏飞, 盛立志, 李林淼, 闫永清, 刘哲, 周晓红 2018 68 160702Google Scholar

    Qiang P F, Sheng L Z, Li L M, Yan Y Q, Liu Z, Zhou X H 2018 Acta Phys. Sin. 68 160702Google Scholar

    [11]

    Zhao D H, Zhang C, Yuan W M, Zhang S N, Willingale R, Ling Z X 2017 Exp. Astron. 43 267Google Scholar

    [12]

    Chen Y, Cui W W, Han D W, et al. 2020 Proc. SPIE 11444 114445bGoogle Scholar

    [13]

    Bernal J D 1935 Nature 136 661Google Scholar

    [14]

    Wolter H 1975 Ann. Phys. 10 94

    [15]

    Zhang X Y, Shui P, Huang L W, Chen S L, Xu L H 2017 Int. J. Aerosp. Eng. 2017 8561830Google Scholar

    [16]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [17]

    Angel J 1979 Astrophys. J. 233 364Google Scholar

    [18]

    Zhu Y X, Lu J B, Yang Y J, Cong M, Sheng L Z, Qiang P F, Cui W W, Zhang Z L, Wang Y S, Han D W, Li W, Wang J, Huo J, Li M S, Zhao X F, Yu N, Song Z Y, Ma J, Lv Z H, Zhao Z J, Wang H, Hou D J, Chen C, Chen T X, Yang X T, Luo L D, Lu B, Xu J J, Chen Y H, Chen Y 2021 Opt. Eng. 60 025102Google Scholar

    [19]

    张星, 王娟, 张艺, 杨彦佶, 陈勇, 文健 2020 光子学报 49 0512002Google Scholar

    Zhang X, Wang J, Zhang Y, Yang Y J, Chen Y, Wen J 2020 Acta Photon. Sin. 49 0512002Google Scholar

    [20]

    赵子健, 王于仨, 张留洋, 陈灿, 马佳 2019 光学精密工程 27 2331Google Scholar

    Zhao Z J, Wang Y S, Zhang L Y, Chen C, Ma J 2019 Opt. Precis. Eng. 27 2331Google Scholar

    [21]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [22]

    Laine R, Giralt R, Zobl R, de Korte P A, Bleeker J A M 1979 Proc. SPIE 184 181Google Scholar

    [23]

    Hunter W R, Michels D J, Fleetwood C M, Mangus J D, Bach B W 1980 Appl. Opt. 19 2128Google Scholar

    [24]

    Jin Y, Feng X, Li D, Xue J D, Wang B, Yang Y J, Ding F 2020 Optik 218 165022Google Scholar

    [25]

    Stover J C 2012 Optical Scattering: Measurement and analysis (SPIE) pp4–10

    [26]

    Canestrari R, Spiga D, Pareschi G 2006 Proc. SPIE 6266 626613Google Scholar

    [27]

    Church L, Jenkinson H, Zavada A, Zavada J 1979 Opt. Eng. 18 182125Google Scholar

    [28]

    Church L, Takacs P Z 1986 Proc. SPIE 0640 126Google Scholar

    [29]

    Spiga D, Cusumano G, Pareschi G 2007 Proc. SPIE 6688 66880HGoogle Scholar

    [30]

    Qi L Q, Li Gang, Xu Y P, Zhang J, Yang Y J, Sheng L Z, Basso S, Campana R, Chen Y, De Rosa A, Pareschi G, Qiang P F, Santangelo A, Sironi G, Song L M, Spiga D, Tagliaferri G, Wang J, Wilms J, Zhang Y, Lu F J 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 963 163702Google Scholar

    [31]

    Spiga D, Raimondi L, Svetina C, Zangrando M 2013 Nucl. Instrum. Methods Phys. Res., Sect. A 710 125Google Scholar

    [32]

    Zombeck M V, Braeuninger H, Ondrusch A, Predehl P 1981 Proc. SPIE 316 174Google Scholar

    [33]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181Google Scholar

    [34]

    陈田祥, 高娜, 李琳, 陈勇, 徐玉朋, 卢方军 2019 光学精密工程 27 2338Google Scholar

    Chen T X, Gao N, Li L, Chen Y, Xu Y P, Lu F J 2019 Opt. Precis. Eng. 27 2338Google Scholar

    [35]

    Freyberg M J, Brauninger H, Burkert W, Hartner G D, Citterio O, Mazzoleni F, Pareschi G, Spiga D, Romaine S, Gorenstein P, Ramsey B D 2005 Exp. Astron. 20 405Google Scholar

    [36]

    Predehl P, Andritschke R, Arefiev V, et al. 2020 Astron. Astrophys. 647 A1Google Scholar

    [37]

    Rukdee S, Budau B, Burwitz V 2021 Test Report-EP FXT MM ACC PANTER (MPE: PANTER) p85

    [38]

    O’Dell S L, Elsner R F, Oosterbroek T 2010 Proc. SPIE 7732 77322VGoogle Scholar

    [39]

    Bradshaw M, Budau B, Burwitz V 2020 Test Report-EP FXT STM MA X4 Post-Thermal Test PANTER (MPE: PANTER) p67

  • 图 1  (a) Wolter-I型聚焦镜光路示意图; (b) 多层嵌套结构示意图

    Fig. 1.  Schematic diagram of (a) optical path of Wolter-I focusing mirror and (b) multi-layer nested structure

    图 2  国产聚焦镜加工流程

    Fig. 2.  Processing flow of domestic mirror

    图 3  (a) 理想镜面的反射; (b) 高频表面粗糙度误差下的XRS效应; (c) 低频面形误差下的大角度偏折

    Fig. 3.  (a) Ideal Reflection; (b) XRS effect under high frequency error; (c) large angle deflection under low frequency error.

    图 4  (a) $ \theta_{{\rm{i}}} = 0.7^{\circ} $时散射概率随RMS的变化; (b) RMS = 0.5 nm时, 不同能量下的散射角分布

    Fig. 4.  (a) Variation of scattering probability with RMS value at $ \theta_{{\rm{i}}} = 0.7^{\circ} $; (b) scattering angle distribution at different energies when RMS = 0.5 nm.

    图 5  镜片二维剖面下面形误差扰动分解示意图. O点为光子在反射面上的入射点, XOY面平行于纸面, YOZ面平行于聚焦镜入射平面, X轴与光轴平行, 为方便显示, 进行了一定的夸张

    Fig. 5.  Decomposition diagram of surface error disturbance under two dimensional (2D) section of mirror. Point O is the incident point on the reflecting surface, the XOY and YOZ planes are parallel to the paper plane and incident plane of the mirror respectively, and the X axis is parallel to the optical axis.

    图 6  高斯模型下的扰动分量对光斑HEW的影响. 其中十字点为${ \boldsymbol{V}_1}$方向扰动分量, 虚线为${\boldsymbol{V}_2}$方向扰动分量

    Fig. 6.  Influence of disturbance component on spot HEW in Gaussian model. The cross point is the disturbance component in ${\boldsymbol {V}_1}$ direction, and the dotted line is the disturbance component in ${\boldsymbol{V}_2}$ direction

    图 7  XRS对光斑PSF的影响(RMS = 0.5 nm, $\sigma_1 = 2^{\prime \prime}, $$ \sigma_2 = 5^{\prime \prime}$)

    Fig. 7.  Effect of XRS on spot PSF (RMS = 0.5 nm, $\sigma_1 = 2^{\prime \prime}, $$ \sigma_2 = 5^{\prime \prime}$)

    图 8  三种不同${\boldsymbol{V}_1}$方向扰动$ \sigma_1 $下粗糙度RMS的影响 (a)对HEW 的影响; (b)对W90的影响

    Fig. 8.  Influence of roughness RMS under three different $ \sigma_1 $: (a) on HEW; (b) on W90

    图 9  (a) FXT聚焦镜有效面积随能量变化的模拟结果(考虑了嵌套结构支撑轮毂的遮挡效应); (b) FXT三种不同遮光膜透过率随能量变化

    Fig. 9.  (a) Simulation results of variation of effective area with energy of FXT focusing mirrors (support spider of multi-layer nested structure has been considered); (b) fariation of transmittance with energy of FXT’s three different filter

    图 10  FXT的QM渐晕曲线实测数据拟合曲线与模拟结果对比. 对应颜色的虚线和散点分别为相同能量下的实测拟合曲线和模拟结果

    Fig. 10.  Fitting results of measured data and simulation results of vignetting. The dashed lines and scattered points of corresponding colors are the fitting and simulation results under the same energy respectively.

    图 11  RMS = 0.5 nm时散射比例实测值与模拟值对比

    Fig. 11.  Comparison between measured and simulated scattering ratio when RMS = 0.5 nm

    图 12  (a) STM成像结果(使用FXT焦平面探测器pnCCD, 单像素尺寸$75 \;\text{µ} {\rm{m}}\times 75 \;\text{µ} {\rm{m}}$, 像素数$ 384 \times 384 $, 中间红色方形区域的放大图如上图所示); (b) STM 成像结果的EEF曲线

    Fig. 12.  (a) Imaging and (b) EEF results of STM test (using FXT focal plane detector pnCCD, single pixel size is $75 \;\text{µ} {\rm{m}} \times 75\;\text{µ} {\rm{m}}$, pixel number is $ 384 \times 384 $ and the enlarged view in the middle red square area is shown in the upper in panel (a))

    图 13  RMS = 0.5 nm, 光子能量为1.49 keV, $ \sigma_2 = 5^{\prime \prime} $时HEW随$ \sigma_1 $的变化

    Fig. 13.  Variation of HEW with $ \sigma_1 $ when RMS = 0.5 nm, photon energy is 1.49 keV and $ \sigma_2 = 5^{\prime \prime} $

    图 14  (a) #1镜三角形畸变成像模拟结果(焦平面探测器为pnCCD); (b)模拟光斑的EEF 曲线

    Fig. 14.  (a) Simulation results of triangular deformation (focal plane detector is pnCCD); (b) simulated EEF

    图 15  (a) STM模拟与实测光斑的一维投影; (b) STM模拟光斑的EEF 曲线

    Fig. 15.  (a) One dimensional projection of STM simulated and test spot; (b) simulated and test EEF curve

    表 1  FXT聚焦镜有效面积模拟结果

    Table 1.  Test simulations of effective area of FXT focusing mirror

    Energy/keV Effective area/${\rm cm^2}$ Effective area with filter/${\rm cm^2}$
    Thin Medium Thick
    1.49 $401.96 \pm 3.02$ $379.94 \pm 2.89$ $356.63 \pm 2.91$ $273.22 \pm 2.53$
    8.04 $28.53 \pm 0.21$ $28.49 \pm 0.20$ $28.44 \pm 0.18$ $28.14 \pm 0.18$
    下载: 导出CSV

    表 2  STM在入射能量为1.49 keV时测试结果[39]

    Table 2.  Test results of STM@1.49 keV[39]

    Shell No. HEW/arcsec
    #1 $48.4 \pm 0.5$
    #24—#27 $25.1 \pm 0.4$
    #54 $24.4 \pm 0.4$
    下载: 导出CSV
    Baidu
  • [1]

    Giacconi R, Branduardi G, Briel U, Epstein A, Fabricant D, Feigelson E, Forman W, Gorenstein P, Grindlay J, Gursky H, Harnden F R, Henry J P, Jones C, Kellogg E, Koch D, Murray S, Schreier E, Seward F, Tananbaum H, Topka K, Van Speybroeck L, Holt S S, Becker R H, Boldt E A, Serlemitsos P J, Clark G, Canizares C, Markert T, Novick R, Helfand D, Long K 1985 Astrophys. J. 230 540Google Scholar

    [2]

    Weisskopf M C, Tananbaum H D, Speybroeck L, O’Dell S L 2000 Proc. SPIE 4012 0277Google Scholar

    [3]

    Jansen F, Lumb D, Altieri B, Clavel J, Ehle M, Gabriel C, Guainazzi M, Gondoin P, Much R, Munoz R, Santos M, Schartel N, Texier D, Vacanti G 2000 Astron. Astrophys. 365 L1-L6Google Scholar

    [4]

    Predehl P 2017 Astron. Nachr. 338 159Google Scholar

    [5]

    Merloni A, Predehl P, Becker W, Bohringer H, Boller T, Brunner H, Brusa M, Dennerl K, Freyberg M, Friedrich P, Georgakakis A, Haberl F, Hasinger G, Meidinger N, Mohr J, Nandra K, Rau A, Reiprich T H, Robrade J, Salvato M, Santangelo A, Sasaki M, Schwope A, Wilms J, German eROSITA Consortium 2012 Casopis Lekaru Ceskych 99 1280Google Scholar

    [6]

    Li T P 2007 Nucl. Phys. B. Proc. Suppl. 166 131Google Scholar

    [7]

    Zhang S N, Li T P, Lu F J, et al. 2020 Sci. Chin.: Phys., Mech. Astron. 63 249502Google Scholar

    [8]

    Yuan W M, Zhang C, Ling Z X, Zhao D H, Wang W X, Chen Y, Lu F J, Zhang S N, Cui W 2018 Proc. SPIE 10699 1069925Google Scholar

    [9]

    Zhang S N, Santangelo A, Feroci M, et al. 2018 Sci. Chin.: Phys., Mech. Astron. 62 029502Google Scholar

    [10]

    强鹏飞, 盛立志, 李林淼, 闫永清, 刘哲, 周晓红 2018 68 160702Google Scholar

    Qiang P F, Sheng L Z, Li L M, Yan Y Q, Liu Z, Zhou X H 2018 Acta Phys. Sin. 68 160702Google Scholar

    [11]

    Zhao D H, Zhang C, Yuan W M, Zhang S N, Willingale R, Ling Z X 2017 Exp. Astron. 43 267Google Scholar

    [12]

    Chen Y, Cui W W, Han D W, et al. 2020 Proc. SPIE 11444 114445bGoogle Scholar

    [13]

    Bernal J D 1935 Nature 136 661Google Scholar

    [14]

    Wolter H 1975 Ann. Phys. 10 94

    [15]

    Zhang X Y, Shui P, Huang L W, Chen S L, Xu L H 2017 Int. J. Aerosp. Eng. 2017 8561830Google Scholar

    [16]

    周庆勇, 魏子卿, 姜坤, 邓楼楼, 刘思伟, 姬剑锋, 任红飞, 王奕迪, 马高峰 2018 67 050701Google Scholar

    Zhou Q Y, Wei Z Q, Jiang K, Deng L L, Liu S W, Ji J F, Ren H F, Wang Y D, Ma G F 2018 Acta Phys. Sin. 67 050701Google Scholar

    [17]

    Angel J 1979 Astrophys. J. 233 364Google Scholar

    [18]

    Zhu Y X, Lu J B, Yang Y J, Cong M, Sheng L Z, Qiang P F, Cui W W, Zhang Z L, Wang Y S, Han D W, Li W, Wang J, Huo J, Li M S, Zhao X F, Yu N, Song Z Y, Ma J, Lv Z H, Zhao Z J, Wang H, Hou D J, Chen C, Chen T X, Yang X T, Luo L D, Lu B, Xu J J, Chen Y H, Chen Y 2021 Opt. Eng. 60 025102Google Scholar

    [19]

    张星, 王娟, 张艺, 杨彦佶, 陈勇, 文健 2020 光子学报 49 0512002Google Scholar

    Zhang X, Wang J, Zhang Y, Yang Y J, Chen Y, Wen J 2020 Acta Photon. Sin. 49 0512002Google Scholar

    [20]

    赵子健, 王于仨, 张留洋, 陈灿, 马佳 2019 光学精密工程 27 2331Google Scholar

    Zhao Z J, Wang Y S, Zhang L Y, Chen C, Ma J 2019 Opt. Precis. Eng. 27 2331Google Scholar

    [21]

    李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民 2018 67 200701Google Scholar

    Li L S, Qiang P F, Sheng L Z, Liu Z, Zhou X H, Zhao B S, Zhang C M 2018 Acta Phys. Sin. 67 200701Google Scholar

    [22]

    Laine R, Giralt R, Zobl R, de Korte P A, Bleeker J A M 1979 Proc. SPIE 184 181Google Scholar

    [23]

    Hunter W R, Michels D J, Fleetwood C M, Mangus J D, Bach B W 1980 Appl. Opt. 19 2128Google Scholar

    [24]

    Jin Y, Feng X, Li D, Xue J D, Wang B, Yang Y J, Ding F 2020 Optik 218 165022Google Scholar

    [25]

    Stover J C 2012 Optical Scattering: Measurement and analysis (SPIE) pp4–10

    [26]

    Canestrari R, Spiga D, Pareschi G 2006 Proc. SPIE 6266 626613Google Scholar

    [27]

    Church L, Jenkinson H, Zavada A, Zavada J 1979 Opt. Eng. 18 182125Google Scholar

    [28]

    Church L, Takacs P Z 1986 Proc. SPIE 0640 126Google Scholar

    [29]

    Spiga D, Cusumano G, Pareschi G 2007 Proc. SPIE 6688 66880HGoogle Scholar

    [30]

    Qi L Q, Li Gang, Xu Y P, Zhang J, Yang Y J, Sheng L Z, Basso S, Campana R, Chen Y, De Rosa A, Pareschi G, Qiang P F, Santangelo A, Sironi G, Song L M, Spiga D, Tagliaferri G, Wang J, Wilms J, Zhang Y, Lu F J 2020 Nucl. Instrum. Methods Phys. Res., Sect. A 963 163702Google Scholar

    [31]

    Spiga D, Raimondi L, Svetina C, Zangrando M 2013 Nucl. Instrum. Methods Phys. Res., Sect. A 710 125Google Scholar

    [32]

    Zombeck M V, Braeuninger H, Ondrusch A, Predehl P 1981 Proc. SPIE 316 174Google Scholar

    [33]

    Henke B L, Gullikson E M, Davis J C 1993 At. Data Nucl. Data Tables 54 181Google Scholar

    [34]

    陈田祥, 高娜, 李琳, 陈勇, 徐玉朋, 卢方军 2019 光学精密工程 27 2338Google Scholar

    Chen T X, Gao N, Li L, Chen Y, Xu Y P, Lu F J 2019 Opt. Precis. Eng. 27 2338Google Scholar

    [35]

    Freyberg M J, Brauninger H, Burkert W, Hartner G D, Citterio O, Mazzoleni F, Pareschi G, Spiga D, Romaine S, Gorenstein P, Ramsey B D 2005 Exp. Astron. 20 405Google Scholar

    [36]

    Predehl P, Andritschke R, Arefiev V, et al. 2020 Astron. Astrophys. 647 A1Google Scholar

    [37]

    Rukdee S, Budau B, Burwitz V 2021 Test Report-EP FXT MM ACC PANTER (MPE: PANTER) p85

    [38]

    O’Dell S L, Elsner R F, Oosterbroek T 2010 Proc. SPIE 7732 77322VGoogle Scholar

    [39]

    Bradshaw M, Budau B, Burwitz V 2020 Test Report-EP FXT STM MA X4 Post-Thermal Test PANTER (MPE: PANTER) p67

  • [1] 廖可梁, 何其利, 宋杨, 李荣刚, 宋茂华, 李盼云, 赵海峰, 刘鹏, 朱佩平. 基于实验室光源的透射X射线纳米分辨显微镜研制.  , 2024, 73(17): 178701. doi: 10.7498/aps.73.20240727
    [2] 吕中华, 杨彦佶, 祝宇轩, 赵晓帆, 杨雄涛, 陈勇. 爱因斯坦探针后随X射线聚焦镜的粒子污染仿真.  , 2023, 72(12): 120701. doi: 10.7498/aps.72.20230301
    [3] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较.  , 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [4] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计.  , 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [5] 李林森, 强鹏飞, 盛立志, 刘哲, 周晓红, 赵宝升, 张淳民. 玻璃基底Wolter-1型X射线聚焦镜研制及测试.  , 2018, 67(20): 200701. doi: 10.7498/aps.67.20181330
    [6] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定.  , 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [7] 颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿. 基于色散干涉图像的拼接望远镜共相零位标定方法研究.  , 2016, 65(19): 199501. doi: 10.7498/aps.65.199501
    [8] 孙璐, 火炎, 周超, 梁建辉, 张祥志, 许子健, 王勇, 吴义政. 利用扫描透射X射线显微镜观测磁涡旋结构.  , 2015, 64(19): 197502. doi: 10.7498/aps.64.197502
    [9] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析.  , 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [10] 颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿. 基于光栅色散干涉条纹的菲佐光干涉望远镜共相检测方法研究.  , 2015, 64(14): 149501. doi: 10.7498/aps.64.149501
    [11] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析.  , 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [12] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究.  , 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [13] 安红海, 王琛, 方智恒, 熊俊, 孙今人, 王伟, 傅思祖, 乔秀梅, 郑无敌, 张国平. 反射镜双程放大对类氖锗软X射线激光的输出影响研究.  , 2011, 60(10): 104207. doi: 10.7498/aps.60.104207
    [14] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪.  , 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [15] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法.  , 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [16] 韩英魁, 王清月, 张志刚, 张伟力, 柴 路, 袁晓东, 黄小军. 飞秒啁啾脉冲放大系统中折叠反射式望远镜对脉冲波前的影响.  , 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [17] 孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤, 崔明启, 朱佩平, 赵屹东, 朱杰, 郑雷, 张景和. 软x射线平面镜不同掠射角下的反射率标定.  , 2004, 53(4): 1099-1104. doi: 10.7498/aps.53.1099
    [18] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元. 用于超短脉冲扩展的时间望远镜.  , 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [19] 张建中, 曹嬿妮. 发散X射线晶体衍射模拟研究.  , 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [20] 《解放军报》. 毛泽东思想是我们革命事业的望远镜和显微镜.  , 1966, 22(8): 855-858. doi: 10.7498/aps.22.855
计量
  • 文章访问数:  4846
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 修回日期:  2022-03-10
  • 上网日期:  2022-06-08
  • 刊出日期:  2022-06-20

/

返回文章
返回
Baidu
map