搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散干涉图像的拼接望远镜共相零位标定方法研究

颜召军 陈欣扬 郑立新 丁媛媛 朱能鸿

引用本文:
Citation:

基于色散干涉图像的拼接望远镜共相零位标定方法研究

颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿

Zero co-phasing reference calibration method based on dispersed interferogram for segmented mirror telescope

Yan Zhao-Jun, Chen Xin-Yang, Zheng Li-Xin, Ding Yuan-Yuan, Zhu Neng-Hong
PDF
导出引用
  • 镜面拼接是一种提高望远镜分辨率的有效方法,拼接子镜间的相位平移误差是影响拼接望远镜成像质量的重要因素.针对当前拼接望远镜中的共相问题,提出了色散干涉图像峰值比值为评价函数的共相零位标定方法.以两个子镜为研究对象,对该共相零位标定方法进行了仿真验证,并搭建了两孔径共相零位标定实验平台,验证了基于色散干涉图像的拼接望远镜共相零位标定方法的可行性.实验结果表明,该方法不受2模糊性问题影响,可在几百微米共相误差范围内以10 nm左右精度对共相零位进行标定,解决了现有标定方法动态范围受限的问题.
    Astronomical telescopes with increasingly large apertures are required to upgrade the limit of diffraction and collect the light efficiently for the purpose of observing fainter and more remote objects with higher angular resolution. However, it is universally believed that traditional techniques of manufacturing, polishing and measuring large glass mirrors will soon face some practical challenges. Therefore, 10-m class or larger ground-based telescopes will need to employ arrays of several smaller segments to assemble into a large primary mirror. For a telescope with segmented mirrors, the piston errors between segments must be adjusted to nearly zero according to the requirements in order to be integrated into a single optical surface, which is known as co-phasing. One of the current co-phasing techniques, which has been successfully applied to Keck telescopes, employs an integration of edge sensors to detect the mirror shapes in real time with an optical phasing sensor to offer zero references for these sensors regularly. Another technique is demonstrated by use of a pyramid wavefront sensor (PWFS) to align and co-phase segmented mirrors in an active control close-loop with a single measurement. The co-phased best flat positions of segments are used as the zero references in order to measure the interaction matrix between the PWFS and the segmented mirrors. So it must be addressed that how the zero co-phasing reference is calibrated with high precision in a large capture range on the issues of co-phasing segmented mirrors. The current methods either lack accuracies, or just measure piston errors correctly in a small range. In order to solve the problem, a zero co-phasing reference calibration method based on dispersed interferogram is proposed. Specifically, the idea of the method is to define an appropriate cost function which is used to evaluate the piston errors between segments. Then it will be easy to determine the zero co-phasing reference position while all the cost function values are calculated based on the dispersed interferogram data with different piston errors inside the capture range. The proposed cost function is defined as the sum of the ratios of the second peak to the third peak of each of the columns of the two-dimensional dispersed interferogram, whose intensity distribution is along the dispersion direction. The precision and dynamic range of the method are analyzed theoretically and studied by simulations. Furthermore, the optical experiment is set up to demonstrate the efficacy of the method. In the experiment a scanning procedure is applied to one mirror and the dispersed interferograms between two mirrors with different piston errors are obtained. And then, the cost functions of these dispersed interferograms are computed through which the zero co-phasing reference position is located. The experimental results prove that the zero co-phasing reference between two mirrors can be calibrated within an accuracy of about 10 nm by making use of the proposed method. In addition, the novel method solves the problem of 2 ambiguity. Besides its sub-millimeter level wide capture range, this new co-phasing detecting method provides a helpful reference for relevant studies.
      通信作者: 颜召军, zhaojunyan@shao.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11403079)资助的课题.
      Corresponding author: Yan Zhao-Jun, zhaojunyan@shao.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11403079).
    [1]

    List of largest optical reflecting telescopes. https://en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes 2016-06-13

    [2]

    van Dam M A, Le Mignant D, Macintosh B A 2004 Appl. Opt. 43 5458

    [3]

    Shi J R 2016 Chin. Sci. Bull. 61 1330(in Chinese) [施建荣2016科学通报61 1330]

    [4]

    Nelson J, Sanders G H 2008 SPIE 7012 70121A

    [5]

    Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M 2012 SPIE 8444 84441H

    [6]

    Schumacher A, Devaney N, Montoya L 2002 Appl. Opt. 41 1297

    [7]

    Chanan G, Troy M, Dekens F, Michaels S, Nelson J, Mast T, Kirkman D 1998 Appl. Opt. 37 140

    [8]

    Chanan G, Ohara C, Troy M 2000 Appl. Opt. 39 4706

    [9]

    Chanan G, Pintó A 2004 Appl. Opt. 43 3279

    [10]

    Shi F, Chanan G, Ohara C, Troy M, Redding D C 2004 Appl. Opt. 43 4474

    [11]

    Shi F, Redding D C, Green J J, Ohara C 2004 SPIE 5487897

    [12]

    Shi F, Redding D C, Bowers C W, Lowman A E, Basinger S A, Norton T A, Peter P, Pamela S D, Mark E W, Ray B 2000 SPIE 4013 757

    [13]

    Zhang Y, Zhang L, Liu G R, Wang Y F, Zhang Y J, Zeng Y Z, Li Y P 2011 Acta Opt. Sin. 31 0212004(in Chinese) [张勇, 张靓, 刘根荣, 王跃飞, 张亚俊, 曾裔中, 李烨平2011光学学报31 0212004]

    [14]

    Luo Q, Huang L H, Gu N T, Li F, Rao C H 2012 Acta Phys. Sin. 61 069501 (in Chinese) [罗群,黄林海,顾乃庭,李斐,饶长辉2012 61 069501]

    [15]

    Esposito S, Pinna E, Puglisi A, Tozzi A, Stefanini P 2005 Opt. Lett. 30 2572

    [16]

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501 (in Chinese) [刘政, 王胜千, 饶长辉2012 61 039501]

    [17]

    Liu Z, Wang S Q, Rao C H 2012 Chin. Phys. B 21 069501

    [18]

    Yan Z J, Chen X Y, Yang P Q, Zhou D, Zheng L X, Zhu N H 2015 Acta Phys. Sin. 64 149501 (in Chinese) [颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿2015 64 149501]

    [19]

    Hénault F 2009 J. Opt. A: Pure Appl. Opt. 11 125503

  • [1]

    List of largest optical reflecting telescopes. https://en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes 2016-06-13

    [2]

    van Dam M A, Le Mignant D, Macintosh B A 2004 Appl. Opt. 43 5458

    [3]

    Shi J R 2016 Chin. Sci. Bull. 61 1330(in Chinese) [施建荣2016科学通报61 1330]

    [4]

    Nelson J, Sanders G H 2008 SPIE 7012 70121A

    [5]

    Johns M, McCarthy P, Raybould K, Bouchez A, Farahani A, Filgueira J, Jacoby G, Shectman S, Sheehan M 2012 SPIE 8444 84441H

    [6]

    Schumacher A, Devaney N, Montoya L 2002 Appl. Opt. 41 1297

    [7]

    Chanan G, Troy M, Dekens F, Michaels S, Nelson J, Mast T, Kirkman D 1998 Appl. Opt. 37 140

    [8]

    Chanan G, Ohara C, Troy M 2000 Appl. Opt. 39 4706

    [9]

    Chanan G, Pintó A 2004 Appl. Opt. 43 3279

    [10]

    Shi F, Chanan G, Ohara C, Troy M, Redding D C 2004 Appl. Opt. 43 4474

    [11]

    Shi F, Redding D C, Green J J, Ohara C 2004 SPIE 5487897

    [12]

    Shi F, Redding D C, Bowers C W, Lowman A E, Basinger S A, Norton T A, Peter P, Pamela S D, Mark E W, Ray B 2000 SPIE 4013 757

    [13]

    Zhang Y, Zhang L, Liu G R, Wang Y F, Zhang Y J, Zeng Y Z, Li Y P 2011 Acta Opt. Sin. 31 0212004(in Chinese) [张勇, 张靓, 刘根荣, 王跃飞, 张亚俊, 曾裔中, 李烨平2011光学学报31 0212004]

    [14]

    Luo Q, Huang L H, Gu N T, Li F, Rao C H 2012 Acta Phys. Sin. 61 069501 (in Chinese) [罗群,黄林海,顾乃庭,李斐,饶长辉2012 61 069501]

    [15]

    Esposito S, Pinna E, Puglisi A, Tozzi A, Stefanini P 2005 Opt. Lett. 30 2572

    [16]

    Liu Z, Wang S Q, Rao C H 2012 Acta Phys. Sin. 61 039501 (in Chinese) [刘政, 王胜千, 饶长辉2012 61 039501]

    [17]

    Liu Z, Wang S Q, Rao C H 2012 Chin. Phys. B 21 069501

    [18]

    Yan Z J, Chen X Y, Yang P Q, Zhou D, Zheng L X, Zhu N H 2015 Acta Phys. Sin. 64 149501 (in Chinese) [颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿2015 64 149501]

    [19]

    Hénault F 2009 J. Opt. A: Pure Appl. Opt. 11 125503

  • [1] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法.  , 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [2] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计.  , 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [3] 董磊, 卢振武, 刘欣悦, 李正炜. 三种降采样成像策略的性能优化以及与传统傅里叶望远镜的比较.  , 2019, 68(7): 074203. doi: 10.7498/aps.68.20181801
    [4] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定.  , 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [5] 张羽, 罗秀娟, 曹蓓, 陈明徕, 刘辉, 夏爱利, 兰富洋. 傅里叶望远镜发射阵列的冗余度及冗余度-斯特列尔比-目标信息特性分析.  , 2016, 65(11): 114201. doi: 10.7498/aps.65.114201
    [6] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析.  , 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [7] 颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿. 基于光栅色散干涉条纹的菲佐光干涉望远镜共相检测方法研究.  , 2015, 64(14): 149501. doi: 10.7498/aps.64.149501
    [8] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析.  , 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [9] 罗群, 黄林海, 顾乃庭, 李斐, 饶长辉. 相位差波前检测方法应用于平移误差检测的实验研究.  , 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [10] 胡摇, 王逍, 朱启华. 三类构型激光脉冲压缩器光栅拼接误差容限比较.  , 2011, 60(12): 124205. doi: 10.7498/aps.60.124205
    [11] 刘政, 王胜千, 黄林海, 饶长辉. 相位平移误差与子孔径自身像差对稀疏光学合成孔径系统成像质量的综合影响分析.  , 2011, 60(10): 100702. doi: 10.7498/aps.60.100702
    [12] 刘宁, 张淳民, 王金婵, 穆廷魁. 新型静态偏振风成像干涉仪理论探测误差的分析与计算.  , 2010, 59(6): 4369-4379. doi: 10.7498/aps.59.4369
    [13] 赵研英, 韩海年, 滕浩, 魏志义. 采用多通腔望远镜谐振腔结构的10MHz重复频率飞秒钛宝石激光器特性研究.  , 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [14] 赵保银, 吕百达. 使用离焦望远镜系统合成轴上平顶光束的一种新方法.  , 2008, 57(5): 2919-2924. doi: 10.7498/aps.57.2919
    [15] 周斌斌, 张 炜, 詹敏杰, 魏志义. Gires-Tournois干涉镜补偿色散的自启动飞秒Cr4+:YAG激光器实验研究.  , 2008, 57(3): 1742-1745. doi: 10.7498/aps.57.1742
    [16] 左言磊, 魏晓峰, 朱启华, 刘红婕, 王 逍, 黄 征, 郭 仪, 应纯同. 基于配对误差补偿方法的拼接光栅压缩池理论研究.  , 2007, 56(9): 5227-5232. doi: 10.7498/aps.56.5227
    [17] 韩英魁, 王清月, 张志刚, 张伟力, 柴 路, 袁晓东, 黄小军. 飞秒啁啾脉冲放大系统中折叠反射式望远镜对脉冲波前的影响.  , 2005, 54(4): 1613-1618. doi: 10.7498/aps.54.1613
    [18] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元. 用于超短脉冲扩展的时间望远镜.  , 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [19] 刘永军, 柴路, 王清月, 张志刚. 对于具有一定宽度的光束通过展宽器的色散误差的评价.  , 2002, 51(6): 1291-1294. doi: 10.7498/aps.51.1291
    [20] 《解放军报》. 毛泽东思想是我们革命事业的望远镜和显微镜.  , 1966, 22(8): 855-858. doi: 10.7498/aps.22.855
计量
  • 文章访问数:  5865
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-06
  • 修回日期:  2016-07-15
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map