搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维NiBr2单层自旋电子输运以及光电性质

王贺岩 高怡帆 廖家宝 陈俊彩 李怡莲 吴怡 徐国亮 安义鹏

引用本文:
Citation:

二维NiBr2单层自旋电子输运以及光电性质

王贺岩, 高怡帆, 廖家宝, 陈俊彩, 李怡莲, 吴怡, 徐国亮, 安义鹏

Spin transport characteristics and photoelectric properties of magnetic semiconductor NiBr2 monolayer

Wang He-Yan, Gao Yi-Fan, Liao Jia-Bao, Chen Jun-Cai, Li Yi-Lian, Wu Yi, Xu Guo-Liang, An Yi-Peng
PDF
HTML
导出引用
  • 磁性半导体材料在自旋电子器件领域具有重要的应用前景. 本文设计了一些基于磁性半导体NiBr2单层的纳米器件结构, 并采用密度泛函理论结合非平衡格林函数方法, 研究了其自旋输运和光电性质. 结果表明, 在不同的输运方向(扶手椅形和锯齿形), NiBr2单层PN结二极管表现出明显的整流效应及自旋过滤效应, 这两种效应在其亚3 nm PIN结场效应晶体管中也同样存在. NiBr2单层PIN结场效应晶体管的电子传输受到栅极电压的调控, 电流随着栅极电压的增大受到抑制. 另外, NiBr2单层对蓝、绿光有较强的响应, 其光电晶体管在两种可见光的照射下可以产生较强的光电流. 本文研究结果揭示了NiBr2单层的多功能特性, 为镍基二卤化物在半导体自旋电子器件和光电器件领域的应用提供了重要参考.
    Magnetic semiconductor materials have potential applications in spintronic devices. In this work, some nano-device structures based on the magnetic semiconductor NiBr2 monolayer (NiBr2-ML) are designed, their spin-resolved transport and photoelectric properties are studied by using density functional theory combined with non-equilibrium Green’s function method. The results show that both the NiBr2-ML PN-junction diodes and sub-3 nanometer PIN-junction field-effect transistors (FETs) exhibit the significant rectification and spin filtering effects in either the armchair or the zigzag direction. The gates can obviously tune the electron transmission of the PIN-junction FETs. The current is significantly suppressed with the increase of gate voltage. In addition, NiBr2-ML has a strong response to the blue and green light, thus its phototransistor can generate a strong photocurrent under the irradiation of blue and green light. The research results in this paper reveal the multifunctional characteristics of NiBr2-ML, which provides an important reference for the application of nickel-based dihalides in semiconductor spintronic devices and optoelectronic devices.
      通信作者: 安义鹏, ypan@htu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11774079)、河南省优秀青年基金(批准号: 202300410226)、河南省高校科技创新人才(批准号: 20HASTIT026)、河南省高等学校重点科研项目(批准号: 22A140020)和中原英才计划-中原青年拔尖人才项目资助的课题.
      Corresponding author: An Yi-Peng, ypan@htu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11774079), the Science Foundation for the Excellent Youth Scholars of Henan Province, China (Grant No. 202300410226), the Scientific and Technological Innovation Program of Henan Province’s Universities, China (Grant No. 20HASTIT026), the Key Scientific Project of Universities of Henan Province, China (Grant No. 22A140020), and the Young Top-notch Talents Project of Henan Province, China (2021year).
    [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [4]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [5]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. Appl. 11 064031Google Scholar

    [6]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [7]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C Y, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [8]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Sheng M, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [9]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [10]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [11]

    Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [12]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [13]

    Fei Z Y, Huang B V, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A, Wu W D, Cobden D, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [14]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [15]

    Zou J Y, He Z R, Xu G 2019 npj Comput. Mater. 5 96Google Scholar

    [16]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [17]

    Chen J, Tang Q 2021 Chem. 27 9925Google Scholar

    [18]

    Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [19]

    Wang L, Shi Y P, Liu M F, Zhang A, Hong Y L, Li R H, Gao Q, Chen M X, Ren W C, Cheng H M, Li Y Y, Chen X Q 2021 Nat. Commun. 12 2361Google Scholar

    [20]

    Yang J S, Zhao L N, Li S Q, Liu H S, Wang L, Chen M D, Gao J F, Zhao J J 2021 Nanoscale 13 5479Google Scholar

    [21]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [22]

    An Y P, Hou Y S, Gong S J, Wu R Q, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Liu W M 2020 Phys. Rev. B 101 075416Google Scholar

    [23]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [24]

    Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L, Biró L P 2016 Carbon 105 408Google Scholar

    [25]

    Novoselov K S, Mishchenko A, Carvalho A, Castro N A H 2016 Science 353 aac9439Google Scholar

    [26]

    Trainer D J, Wang B K, Bobba F, Samuelson N, Xi X X, Zasadzinski J, Nieminen J, Bansil A, Iavarone M 2020 ACS Nano 14 2718Google Scholar

    [27]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [28]

    Li Q Z, Chen K Q, Tang L M 2020 Phys. Rev. Appl. 13 014064Google Scholar

    [29]

    Yekta Y, Hadipour H, Şaşıoğlu E, Friedrich C, Jafari S A, Blügel S, Mertig I 2021 Phys. Rev. Mater. 5 034001Google Scholar

    [30]

    Amoroso D, Barone P, Picozzi S 2020 Nat. Commun. 11 5784Google Scholar

    [31]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [32]

    Lu M, Yao Q S, Xiao C Y, Huang C X, Kan E J 2019 ACS Omega 4 5714Google Scholar

    [33]

    Mushtaq M, Zhou Y G, Xiang X 2017 RSC Adv. 7 22541Google Scholar

    [34]

    Bikaljevic D, Gonzalez-Orellana C, Pena-Diaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Nino M A, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Jingcheng L, Ilyn M, Rogero C, Pascual J I 2021 ACS Nano 15 14985Google Scholar

    [35]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanpera A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [36]

    Tang H, Shi B W, Pan Y Y, Li J Z, Zhang X Y, Yan J H, Liu S Q, Yang J, Xu L Q, Yang J B, Wu M B, Lu J 2019 Adv. Theor. Simul. 2 1900001Google Scholar

    [37]

    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [38]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [39]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [40]

    Perdew J P, Burke K E M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B. 46 6671Google Scholar

    [42]

    Zhang Q X, Wei J, Liu J C, Wang Z C, Lei M, Quhe R G 2019 ACS Appl. Nano Mater. 2 2796Google Scholar

    [43]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [44]

    Friedt J M, Sanchez J P, Shenoy G K 1976 J. Chem. Phys. 65 5093Google Scholar

    [45]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [46]

    Huang L F, Zeng Z 2015 J. Phys. Chem. C 119 18779Google Scholar

    [47]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [48]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [49]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [50]

    Shukla V, Grigoriev A, Jena N K, Ahuja R 2018 Phys. Chem. Chem. Phys. 20 22952Google Scholar

    [51]

    Wang H H, Cheng Z H, Shi M Z, Ma D H, Zhuo W Z, Xi C Y, Wu T, Ying J J, Chen X H 2021 Sci. China Phys. Mech. 64 287411Google Scholar

    [52]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [53]

    Das B, Mahapatra S 2020 J. Appl. Phys. 128 234502Google Scholar

    [54]

    Quhe R G, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [55]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [56]

    Chen X L, Huang B J, Zhang C W, Li P, Wang P J 2017 J. Nanomater. 2017 4815251Google Scholar

    [57]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [58]

    Gunst T, Markussen T, Palsgaard M L N, Stokbro K, Brandbyge M 2017 Phys. Rev. B 96 161404Google Scholar

    [59]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [60]

    Palsgaard M, Markussen T, Gunst T, Brandbyge M, Stokbro K 2018 Phys. Rev. Appl. 10 014026Google Scholar

    [61]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [62]

    Wang Q, Zhang Q, Zhao X, Zheng Y J, Wang J, Luo X, Dan J, Zhu R, Liang Q, Zhang L, Wong P K J, He X, Huang Y L, Wang X, Pennycook S J, Eda G, Wee A T S 2019 Nano Lett. 19 5595Google Scholar

  • 图 1  NiBr2单层的几何和电子结构 (a) NiBr2单层的顶部和侧面示意图(x轴表示沿锯齿形方向; y轴表示沿扶手椅形方向); (b) 声子能带和声子投影态密度; 自旋(c)向上态和(d)向下态的元素投影电子能带和投影态密度. 费米能级(EF)移到了能量零点位置

    Fig. 1.  Geometric and electronic structures of NiBr2 monolayer (NiBr2-ML): (a) Schematic diagram of the top and side views of NiBr2-ML (x axis refers to the zigzag direction of NiBr2-ML, and y axis indicates its armchair direction); (b) phonon band and projected phonon density of states (Ph-DOS); element-projected band structures and density of states (DOS) for (c) the spin-up and (d) spin-down states. The Fermi level (EF) is shifted to zero.

    图 2  Γ点附近的(a)自旋向上和(b)自旋向下的导带和价带的三维(3D)视图及在(c)—(f)第一布里渊区的二维投影图; 颜色卡显示了导带和价带的能量本征值从低(红色)到高(紫色)

    Fig. 2.  Three-dimensional (3D) views of the conduction and valence bands for the (a) spin-up and (b) spin-down states around the Γ point, and (c)–(f) their 2D projections in the first Brillouin zone. The colorbar shows the eigenvalues of bands from low (red) to high (purple).

    图 3  NiBr2单层PN结二极管的自旋输运性质 (a) NiBr2单层PN结二极管示意图; (b) Z型NiBr2单层PN结二极管的偏置电压-电流和极化率曲线; (c) Z型NiBr2单层PN结二极管的整流比曲线; (d)—(f) 在0, –0.8和0.8 V偏置电压下的自旋极化透射谱(左侧)和投影局域态密度图(右侧), 其中上图对应自旋向上态, 下图对应自旋向下态. 图(d)中的颜色卡显示了(d)—(f)中的数据从0 (白色)到高(蓝色)

    Fig. 3.  Spin-resolved transport properties of PN-junction diodes of NiBr2-ML: (a) Schematic of the PN-junction diodes of NiBr2-ML. (b) I-V and polarization ratio (PR) curves of Z-type PN-junction diode of NiBr2-ML; (c) rectifying ratio curve of Z-type PN-junction diode of NiBr2-ML; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, –0.8, and 0.8 V, where the top panel and bottom panel correspond to spin-up and spin-down state, respectively. The colorbar shows the data from 0 (white) to high (blue).

    图 4  NiBr2单层PN结二极管的器件特性 (a) Z型NiBr2单层PN结二极管的微分电导曲线; (b) 偏压相关的自旋向上和自旋向下态的电子透射谱; (c) –0.8 V偏压时k空间相关的自旋电子透射系数T(E, k). 颜色图显示了从0 (白色)到高(蓝色)的图(b)和(c)数据, 其中上图对应自旋向上态, 下图对应自旋向下态

    Fig. 4.  Device properties of the PN-junction diodes of NiBr2-ML: (a) Difference conductance curves of Z-type PN-junction diodes of NiBr2-ML; (b) bias-dependent transmission spectra for the spin-up and spin-down states; (c) k-dependent transmission coefficients T(E, k) at –0.8 V. The colormap shows the T(E, k) from 0 (white) to high (blue). Top and bottom panel in (b) and (c) correspond to spin-up and spin-down state, respectively.

    图 5  Z型NiBr2单层PIN结场效应晶体管在不同栅压下的输运特性 (a)—(c) 0, 1和2 V栅极电压下自旋向上和自旋向下的偏置电流和自旋极化率曲线; (d)—(f) 在0, 1和2 V栅极电压下的自旋极化透射谱和投影局域态密度图, 其中上图对应自旋向上态, 下图对应自旋向下态; (g) NiBr2单层PIN结场效应晶体管示意图

    Fig. 5.  Transport properties of Z-type NiBr2-ML PIN-junction field-effect transistors (FET) under different gate voltages: (a)–(c) I-V and polarization ratio curves under the gate voltages of 0, 1, and 2 V, respectively; (d)–(f) spin-resolved transmission spectra T(E) and projected local density of states under the biases of 0, 1, and 2 V, where top and bottom panel correspond to spin-up and spin-down state, respectively; (g) schematic of the NiBr2-ML FET.

    图 6  在不同栅极电压下, Z型NiBr2单层PIN结场效应晶体管的自旋向上(up)、自旋向下(dn)及总的(Total)整流比曲线 (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V

    Fig. 6.  Spin-up, spin-down, total rectifying ratio curves of Z-type NiBr2-ML PIN-junction FET under different gate voltages: (a) Vg = 0 V; (b) Vg = 1 V; (c) Vg = 2 V.

    图 7  NiBr2单层的光电特性 (a) NiBr2单层的光电导率, 七彩光谱背景色为可见光区; (b) NiBr2单层的PIN结光电晶体管示意图; (c) Z型NiBr2单层的PIN结光电晶体管在0 V偏压(无电源)下的自旋光电流密度; (d) 0 V偏压时不同栅极电压下的Z型NiBr2单层的PIN结光电晶体管光电流谱. IR, VR, UR分别指红外区、可见光区、紫外区

    Fig. 7.  Photoelectric properties of the NiBr2-ML: (a) Optical-conductivity of NiBr2-ML, where the embedded spectrum pattern displays the visible region; (b) schematic of the PIN-junction phototransistor of NiBr2-ML; (c) spin-resolved photocurrent density of the Z-type PIN-junction phototransistor of NiBr2-ML under zero bias (without power); (d) gate-dependent photocurrent spectra of the Z-type phototransistor of NiBr2-ML under zero bias. IR, VR, and UR refer to the infrared, visible, and ultraviolet region, respectively.

    Baidu
  • [1]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Ataca C, Şahin H, Ciraci S 2012 J. Phys. Chem. C 116 8983Google Scholar

    [4]

    An Y P, Gong S J, Hou Y S, Li J, Wu R Q, Jiao Z Y, Wang T X, Jiao J T 2020 J. Phys. Condens. Matter 32 055503Google Scholar

    [5]

    An Y P, Hou Y S, Wang H, Li J, Wu R Q, Wang T X, Da H X, Jiao J T 2019 Phys. Rev. Appl. 11 064031Google Scholar

    [6]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu D P, Wang T X, Fu Z M, Xu G L, Wu R Q 2018 Phys. Chem. Chem. Phys. 20 21552Google Scholar

    [7]

    An Y P, Jiao J T, Hou Y S, Wang H, Wu R Q, Liu C Y, Chen X N, Wang T X, Wang K 2019 J. Phys. Condens. Matter 31 065301Google Scholar

    [8]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Sheng M, Chen L, Wu K H 2016 Nat. Chem. 8 563Google Scholar

    [9]

    Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513Google Scholar

    [10]

    Arcudia J, Kempt R, Cifuentes-Quintal M E, Heine T, Merino G 2020 Phys. Rev. Lett. 125 196401Google Scholar

    [11]

    Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [12]

    Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, Zhang Y B 2018 Nature 563 94Google Scholar

    [13]

    Fei Z Y, Huang B V, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A, Wu W D, Cobden D, Chu J H, Xu X D 2018 Nat. Mater. 17 778Google Scholar

    [14]

    Gong C, Zhang X 2019 Science 363 706Google Scholar

    [15]

    Zou J Y, He Z R, Xu G 2019 npj Comput. Mater. 5 96Google Scholar

    [16]

    An Y P, Wang K, Gong S J, Hou Y S, Ma C L, Zhu M F, Zhao C X, Wang T X, Ma S H, Wang H Y, Wu R Q, Liu W M 2021 npj Comput. Mater. 7 45Google Scholar

    [17]

    Chen J, Tang Q 2021 Chem. 27 9925Google Scholar

    [18]

    Mortazavi B, Javvaji B, Shojaei F, Rabczuk T, Shapeev A V, Zhuang X Y 2021 Nano Energy 82 105716Google Scholar

    [19]

    Wang L, Shi Y P, Liu M F, Zhang A, Hong Y L, Li R H, Gao Q, Chen M X, Ren W C, Cheng H M, Li Y Y, Chen X Q 2021 Nat. Commun. 12 2361Google Scholar

    [20]

    Yang J S, Zhao L N, Li S Q, Liu H S, Wang L, Chen M D, Gao J F, Zhao J J 2021 Nanoscale 13 5479Google Scholar

    [21]

    An Y P, Hou Y S, Wang K, Gong S J, Ma C L, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Wu R Q 2020 Adv. Funct. Mater. 30 2002939Google Scholar

    [22]

    An Y P, Hou Y S, Gong S J, Wu R Q, Zhao C X, Wang T X, Jiao Z Y, Wang H Y, Liu W M 2020 Phys. Rev. B 101 075416Google Scholar

    [23]

    Kezilebieke S, Huda M N, Vano V, Aapro M, Ganguli S C, Silveira O J, Glodzik S, Foster A S, Ojanen T, Liljeroth P 2020 Nature 588 424Google Scholar

    [24]

    Koós A A, Vancsó P, Magda G Z, Osváth Z, Kertész K, Dobrik G, Hwang C, Tapasztó L, Biró L P 2016 Carbon 105 408Google Scholar

    [25]

    Novoselov K S, Mishchenko A, Carvalho A, Castro N A H 2016 Science 353 aac9439Google Scholar

    [26]

    Trainer D J, Wang B K, Bobba F, Samuelson N, Xi X X, Zasadzinski J, Nieminen J, Bansil A, Iavarone M 2020 ACS Nano 14 2718Google Scholar

    [27]

    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, Marzari N 2018 Nat. Nanotech. 13 246Google Scholar

    [28]

    Li Q Z, Chen K Q, Tang L M 2020 Phys. Rev. Appl. 13 014064Google Scholar

    [29]

    Yekta Y, Hadipour H, Şaşıoğlu E, Friedrich C, Jafari S A, Blügel S, Mertig I 2021 Phys. Rev. Mater. 5 034001Google Scholar

    [30]

    Amoroso D, Barone P, Picozzi S 2020 Nat. Commun. 11 5784Google Scholar

    [31]

    Botana A S, Norman M R 2019 Phys. Rev. Mater. 3 044001Google Scholar

    [32]

    Lu M, Yao Q S, Xiao C Y, Huang C X, Kan E J 2019 ACS Omega 4 5714Google Scholar

    [33]

    Mushtaq M, Zhou Y G, Xiang X 2017 RSC Adv. 7 22541Google Scholar

    [34]

    Bikaljevic D, Gonzalez-Orellana C, Pena-Diaz M, Steiner D, Dreiser J, Gargiani P, Foerster M, Nino M A, Aballe L, Ruiz-Gomez S, Friedrich N, Hieulle J, Jingcheng L, Ilyn M, Rogero C, Pascual J I 2021 ACS Nano 15 14985Google Scholar

    [35]

    Smidstrup S, Markussen T, Vancraeyveld P, Wellendorff J, Schneider J, Gunst T, Verstichel B, Stradi D, Khomyakov P A, Vej-Hansen U G, Lee M E, Chill S T, Rasmussen F, Penazzi G, Corsetti F, Ojanpera A, Jensen K, Palsgaard M L N, Martinez U, Blom A, Brandbyge M, Stokbro K 2020 J. Phys. Condens. Matter 32 015901Google Scholar

    [36]

    Tang H, Shi B W, Pan Y Y, Li J Z, Zhang X Y, Yan J H, Liu S Q, Yang J, Xu L Q, Yang J B, Wu M B, Lu J 2019 Adv. Theor. Simul. 2 1900001Google Scholar

    [37]

    Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K 2002 Phys. Rev. B 65 165401Google Scholar

    [38]

    Soler J M, Artacho E, Gale J D, García A, Junquera J, Ordejón P, Sánchez-Portal D 2002 J. Phys. Condens. Matter 14 2745Google Scholar

    [39]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104Google Scholar

    [40]

    Perdew J P, Burke K E M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [41]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B. 46 6671Google Scholar

    [42]

    Zhang Q X, Wei J, Liu J C, Wang Z C, Lei M, Quhe R G 2019 ACS Appl. Nano Mater. 2 2796Google Scholar

    [43]

    Schlipf M, Gygi F 2015 Comput. Phys. Commun. 196 36Google Scholar

    [44]

    Friedt J M, Sanchez J P, Shenoy G K 1976 J. Chem. Phys. 65 5093Google Scholar

    [45]

    Liu H N, Wang X S, Wu J X, Chen Y S, Wan J, Wen R, Yang J B, Liu Y, Song Z G, Xie L M 2020 ACS Nano 14 10544Google Scholar

    [46]

    Huang L F, Zeng Z 2015 J. Phys. Chem. C 119 18779Google Scholar

    [47]

    Gong P, Yang Y Y, Ma W D, Fang X Y, Jing X L, Jia Y H, Cao M S 2021 Physica E 128 114578Google Scholar

    [48]

    Jia Y H, Gong P, Li S L, Ma W D, Fang X Y, Yang Y Y, Cao M S 2020 Phys. Lett. A 384 126106Google Scholar

    [49]

    Gunst T, Markussen T, Stokbro K, Brandbyge M 2016 Phys. Rev. B 93 035414Google Scholar

    [50]

    Shukla V, Grigoriev A, Jena N K, Ahuja R 2018 Phys. Chem. Chem. Phys. 20 22952Google Scholar

    [51]

    Wang H H, Cheng Z H, Shi M Z, Ma D H, Zhuo W Z, Xi C Y, Wu T, Ying J J, Chen X H 2021 Sci. China Phys. Mech. 64 287411Google Scholar

    [52]

    Stradi D, Martinez U, Blom A, Brandbyge M, Stokbro K 2016 Phys. Rev. B 93 155302Google Scholar

    [53]

    Das B, Mahapatra S 2020 J. Appl. Phys. 128 234502Google Scholar

    [54]

    Quhe R G, Li Q H, Zhang Q X, Wang Y Y, Zhang H, Li J Z, Zhang X Y, Chen D X, Liu K H, Ye Y, Dai L, Pan F, Lei M, Lu J 2018 Phys. Rev. Appl. 10 024022Google Scholar

    [55]

    Yang Y Y, Gong P, Ma W D, Hao R, Fang X Y 2021 Chin. Phys. B 30 067803Google Scholar

    [56]

    Chen X L, Huang B J, Zhang C W, Li P, Wang P J 2017 J. Nanomater. 2017 4815251Google Scholar

    [57]

    Perdew J P, Zunger A 1981 Phys. Rev. B 23 5048Google Scholar

    [58]

    Gunst T, Markussen T, Palsgaard M L N, Stokbro K, Brandbyge M 2017 Phys. Rev. B 96 161404Google Scholar

    [59]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [60]

    Palsgaard M, Markussen T, Gunst T, Brandbyge M, Stokbro K 2018 Phys. Rev. Appl. 10 014026Google Scholar

    [61]

    Pan Y, Wang Q Z, Yeats A L, Pillsbury T, Flanagan T C, Richardella A, Zhang H, Awschalom D D, Liu C X, Samarth N 2017 Nat. Commun. 8 1037Google Scholar

    [62]

    Wang Q, Zhang Q, Zhao X, Zheng Y J, Wang J, Luo X, Dan J, Zhu R, Liang Q, Zhang L, Wong P K J, He X, Huang Y L, Wang X, Pennycook S J, Eda G, Wee A T S 2019 Nano Lett. 19 5595Google Scholar

  • [1] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质.  , 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [2] 梁世恒, 陆沅, 韩秀峰. 自旋发光二极管研究进展.  , 2020, 69(20): 208501. doi: 10.7498/aps.69.20200866
    [3] 李春雷, 徐燕, 郑军, 王小明, 袁瑞旸, 郭永. 磁电势垒结构中光场辅助电子自旋输运特性.  , 2020, 69(10): 107201. doi: 10.7498/aps.69.20200237
    [4] 韩佳凝, 范志强, 张振华. Fe3GeTe2纳米带的结构稳定性、磁电子性质及调控效应.  , 2019, 68(20): 208502. doi: 10.7498/aps.68.20191103
    [5] 侯海燕, 姚慧, 李志坚, 聂一行. 磁性硅烯超晶格中电场调制的谷极化和自旋极化.  , 2018, 67(8): 086801. doi: 10.7498/aps.67.20180080
    [6] 伊丁, 武镇, 杨柳, 戴瑛, 解士杰. 有机分子在铁磁界面处的自旋极化研究.  , 2015, 64(18): 187305. doi: 10.7498/aps.64.187305
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [8] 郑圆圆, 任桂明, 陈锐, 王兴明, 谌晓洪, 王玲, 袁丽, 黄晓凤. 氢化铁的自旋极化效应及势能函数.  , 2014, 63(21): 213101. doi: 10.7498/aps.63.213101
    [9] 胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤. 空穴掺杂Sr2FeMoO6的晶体结构及磁性研究.  , 2012, 61(22): 226101. doi: 10.7498/aps.61.226101
    [10] 黎欢, 郭卫. 自旋极化对Kondo系统基态的影响.  , 2010, 59(10): 7320-7326. doi: 10.7498/aps.59.7320
    [11] 陈华, 杜磊, 庄奕琪, 牛文娟. Rashba自旋轨道耦合作用下电荷流散粒噪声与自旋极化的关系研究.  , 2009, 58(8): 5685-5692. doi: 10.7498/aps.58.5685
    [12] 陈小雪, 滕利华, 刘晓东, 黄绮雯, 文锦辉, 林位株, 赖天树. InGaN薄膜中电子自旋偏振弛豫的时间分辨吸收光谱研究.  , 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [13] 唐振坤, 王玲玲, 唐黎明, 游开明, 邹炳锁. 磁台阶势垒结构中二维电子气的自旋极化输运.  , 2008, 57(9): 5899-5905. doi: 10.7498/aps.57.5899
    [14] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究.  , 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [15] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程.  , 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [16] 张昌文, 李 华, 董建敏, 王永娟, 潘凤春, 郭永权, 李 卫. 化合物SmCo5的电子结构、自旋和轨道磁矩及其交换作用分析.  , 2005, 54(4): 1814-1820. doi: 10.7498/aps.54.1814
    [17] 付吉永, 任俊峰, 刘德胜, 解士杰. 一维铁磁/有机共轭聚合物的自旋极化研究.  , 2004, 53(6): 1989-1993. doi: 10.7498/aps.53.1989
    [18] 陈丽, 李华, 董建敏, 潘凤春, 梅良模. 原子簇La8-xBaxCuO6的原子磁矩和自旋极化的电子结构研究.  , 2004, 53(1): 254-259. doi: 10.7498/aps.53.254
    [19] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究.  , 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
    [20] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运.  , 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
计量
  • 文章访问数:  5216
  • PDF下载量:  244
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-24
  • 修回日期:  2022-01-14
  • 上网日期:  2022-01-28
  • 刊出日期:  2022-05-05

/

返回文章
返回
Baidu
map