-
原子自旋成像技术对气室内温度分布、旋光角检测以及镀膜抗弛豫特性测量至关重要,其关键在于精确捕捉并解析原子自旋极化的复杂时空动态特性,这些特性直接关系到磁强计带宽的扩展及磁梯度检测的灵敏度提升。传统的气室内分割成像方法因静态特性限制,无法实时捕捉原子自旋极化态的动态演变过程,制约了量子测量仪器的性能提升。针对这一挑战,本研究提出了一种实时调控原子自旋极化态的碱金属原子气室动态自旋成像方法,在空间分布上实时控制光束阵列中不同位置激光束的连续通断;在时间序列上控制光束阵列中每束光的通断频率变化,从而生成具有特定空间分布和频率特性的激光,分别与气室内部不同位置的碱金属原子相互作用,诱导原子自旋极化程度的变化。通过对激光特性的精细调节,当泵浦光的调制频率与原子在磁场中的拉莫尔频率相匹配时,原子自旋极化达到最大值,系统处于共振状态;当调制频率与拉莫尔频率不匹配时,原子自旋极化程度降低。通过这种频率调制方法实现了对原子自旋极化状态地动态操控。实验结果表明,该方法达到了95.9μm的空间分辨率和355帧的时间分辨率,显著优于传统静态自旋成像方法。此方法显著增强了对原子自旋极化动态特性的认知,使我们能够更精确地观测并分析磁场分布的动态特征,从而为量子仪表性能的进一步优化提供了坚实的实验依据与有力支持。As the central element of state-of-the-art quantum measurement devices like atomic clocks, atomic gyroscopes, and atomic magnetometers, the spatial and temporal evolution of atomic spin polarization inside the atomic vapor cell has a major effect on both increasing the magnetometers' bandwidth and improving the precision of magnetic gradient measurements. However, the major factor preventing the further advancement of quantum measurement instruments' performance is the inherent static nature of the conventional intra-vapor cell segmentation imaging technique, which makes it challenging to achieve the real-time capture of the dynamic evolution of atomic spin states. Our research team suggests a dynamic spin imaging method for alkali metal atomic vapor cells with real-time modification of atomic spin polarization states in order to overcome this technological difficulty. In particular, to guarantee that the laser can precisely act on the alkali metal atoms in various regions within the vapor cell, we employ a complex beam array management system to modify the on/off state of the laser beams at various positions in the spatial dimension in real time. In the meantime, we generate laser fields with particular spatial distribution and frequency characteristics by using frequency modulation techniques in the time series to accurately regulate the on-off frequency of each laser beam in the beam array. These laser beams cause dynamic changes in the atomic spin polarization state by interacting with alkali metal atoms at various points within the vapor cell. Through precise adjustment of the laser properties, we have been able to see and study the dynamic evolution of the atomic spin-polarization state in real time. According to the experimental data, the technology outperforms the conventional static spin imaging techniques by achieving an excellent temporal resolution of 355 frames per second and a spatial resolution of 95.9 micrometers. The effective use of this method allows us to monitor and evaluate the dynamic aspects of magnetic field distribution with previously unheard-of precision, in addition to significantly enhancing our understanding of the dynamic properties of atomic spin polarization.
-
[1] Albert M, Cates G, Driehuys B, Happer W, Saam B, Springer Jr, Wishnia A 1994Nature 370 199
[2] Chupp T, Hoare R, Walsworth R, Wu B 1994Phys. Rev. Lett. 72 2363
[3] Navon G, Song Y Q, Room T, Appelt S, Taylor R, Pines A 1996Scienc 271 1848
[4] Ishikawa K, Anraku Y, Takahashi Y, Yabuzaki T 1999J. Opt. Soc. Am. B 16 31
[5] Hao C P 2022Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese) [郝传鹏2022博士学位论文(合肥:中国科学技术大学)]
[6] Savukov I, Romalis M 2005Phys. Rev. Lett. 94 123001
[7] Xu S J, Yashchuk V, Donaldson M, Rochester S, Budker D, Pines A 2006PNAS 103 12668
[8] Savukov I, Karaulanov T 2014J. Magn. Reson. 249 49
[9] Young A, Appelt S, Baranga A, Erickson C, Happer W 1997Appl. Phys. Lett. 70 3081
[10] Skalla J, Wackerle G, Mehring M 1997Opt. Commun. 143 209
[11] Skalla J, Wackerle G, Mehring M, Pines A 1997Phys. Lett. A 226 69
[12] Baranga A, Appelt S, Erickson C, Young A, Happer W 1998Phys. Rev. A 58 2282
[13] Giel D, Hinz G, Nettels D, Weis A 2000Opt. Express 6 251
[14] Savukov I 2015J. Magn. Reson. 256 9
[15] Ito Y, Sato D, Kamada K, Kobayashi T 2014IEEE Trans. Magn. 50 1
[16] Nishi K, Ito Y, Kobayashi T 2018Opt. Express 26 1988
[17] Johnson C, Schwindt P 2010IEEE International Frequency Control Symposium Newport Beach, CA, June 4-6, 2010 p371
[18] Johnson C, Schwindt P, Weisend M 2010Appl. Phys. Lett. 97 243703
[19] Kominis I, Kornack T, Allred J, Romalis M 2003Nature 422 596
[20] Gusarov A, Levron D, Paperno E, Shuker R, Baranga A 2009IEEE Trans. Magn. 45 4478
[21] Kim K, Begus S, Xia H, Lee S, Jazbinsek V, Trontelj Z, Romalis M 2014NeuroImage. 89 143
[22] Xia H, Baranga A, Hoffman D, Romalis M 2006Appl. Phys. Lett. 89 211104
[23] Mamishin Y, Ito Y, Kobayashi T 2017IEEE Trans. Magn. 534001606
[24] Dolgovskiy V, Fescenko I, Sekiguchi N, Colombo S, Lebedev V, Zhang J, Weis A 2016Appl. Phys. Lett. 109 023505
[25] Weis A, Colombo S, Dolgovskiy V, Grujic Z, Lebedev V, Zhang J 2017J. Phys.: Conf. Ser. 793 012032
[26] Taue S, Toyota Y, Fujimori K, Fukano H 201722nd Microoptics Conference Tokyo, November 19-22, 2017 p212
[27] Cao Y P, Su X Y, Xiang L Q 2002Laser.Journal 23 16(in Chinese) [曹益平,苏显渝,向立群2002激光杂志23 16]
[28] Dong H F, Yin L X, Li A X, Zhao N, Chen J L, Sun M J 2019J. Appl. Phys. 125 023908
[29] Dong H F, Chen J L, Li J M, Liu C, Li A X, Zhao N, Guo F Z 2019J. Appl. Phys. 125 243904
[30] Ding Z C, Yuan J, Long X 2018Sensors 18 1401
[31] Wyllie R, 2012Ph. D. Dissertation (Madison: University of Wisconsin–Madison)
[32] Mitsunaga T, Nayar S 1999 Proceedings. 1999IEEE Computer Society Conference on Computer Vision and Pattern Recognition Fort Collins, CO, July 6-9, 1999 p374
计量
- 文章访问数: 82
- PDF下载量: 2
- 被引次数: 0