-
不确定关系是量子力学的基本特征之一, 随着量子信息理论的蓬勃发展, 不确定关系更是在其中发挥着重要的作用. 特别是将熵引入来描述不确定关系之后, 不确定关系在量子信息技术中涌现出多种应用. 众所周知, 熵不确定度关系已成为几乎所有量子密码协议安全分析的核心要素. 这篇综述主要回顾不确定关系的发展历史和最新研究进展, 从Heisenberg提出不相容测量其结果是不能被预测伊始, 许多学者在该观点的启发下, 做了进一步的相关扩展研究, 将可观测物体与环境之间的量子关联结合起来, 对不确定关系进行各种推广从而得到更普适的数学表达式. 除此以外, 本文还重点介绍了量子存储下的熵不确定度关系及其发展, 也介绍了在某些物理系统中对应的动力学特性. 最后讨论了熵不确定度关系在量子信息领域的各种应用, 从随机数到波粒二象性再到量子密钥分发.The Heisenberg uncertainty principle is one of the characteristics of quantum mechanics. With the vigorous development of quantum information theory, uncertain relations have gradually played an important role in it. In particular, in order to solved the shortcomings of the concept in the initial formulation of the uncertainty principle, we brought entropy into the uncertainty relation, after that, the entropic uncertainty relation has exploited the advantages to the full in various applications. As we all know the entropic uncertainty relation has became the core element of the security analysis of almost all quantum cryptographic protocols. This review mainly introduces development history and latest progress of uncertain relations. After Heisenberg's argument that incompatible measurement results are impossible to predict, many scholars, inspired by this viewpoint, have made further relevant investigations. They combined the quantum correlation between the observable object and its environment, and carried out various generalizations of the uncertainty relation to obtain more general formulas. In addition, it also focuses on the entropy uncertainty relationship and quantum-memory-assisted entropic uncertainty relation, and the dynamic characteristics of uncertainty in some physical systems. Finally, various applications of the entropy uncertainty relationship in the field of quantum information are discussed, from randomnesss to wave-particle duality to quantum key distribution.
-
Keywords:
- entopic uncertainty relation /
- quantum memory /
- quantum correlation
[1] Heisenberg W 1927 Z. Phys. 43 172
Google Scholar
[2] Kennard E H 1927 Z. Phys. 44 326
Google Scholar
[3] Robertson H P 1929 Phys. Rev. 34 163
Google Scholar
[4] Deutsch D 1983 Phys. Rev. Lett. 50 631
Google Scholar
[5] Everett H 1957 Rev. Mod. Phys. 29 454
Google Scholar
[6] Hirschman I I 1957 Am. J. Math. 79 152
Google Scholar
[7] Kraus K 1987 Phys. Rev. D 35 3070
Google Scholar
[8] Maassen H, Uffink J 1988 Phys. Rev. Lett. 60 1103
Google Scholar
[9] Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659
Google Scholar
[10] Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402
Google Scholar
[11] Schrödinger E 1930 Physikalisch-Mathematische Klasse 14 296
[12] Maccone L, Pati A K 2014 Phys. Rev. Lett. 113 260401
Google Scholar
[13] Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S, Xue P 2016 Phys. Rev. A 93 052108
Google Scholar
[14] Xiao L, Wang K, Zhan X, Bian Z, Li J, Zhang Y, Xue P, Pati A K 2017 Opt. Express 25 17904
Google Scholar
[15] Fan B, Wang K K, Xiao L, Xue P 2018 Phys. Rev. A 98 032118
Google Scholar
[16] Białynicki-Birula I, Mycielski J 1975 Commun. Math. Phys. 44 129
Google Scholar
[17] Shannon C 1948 Bell Syst. Tech. J. 27 379
Google Scholar
[18] Korzekwa K, Lostaglio M, Jennings D, Rudolph T 2014 Phys. Rev. A 89 042122
Google Scholar
[19] Rényi A 1961 Proceedings of the 4th Berkeley Symposiumon Mathematical Statistics and Probability (Vol. 1) (Berkeley: University of California Press) pp547–561
[20] Dodonov V V, Dodonov A V 2015 Phys. Scr. 90 074049
Google Scholar
[21] Rastegin A E 2019 Ann. Phys. 531 1800466
Google Scholar
[22] Pegg D T 1998 Phys. Rev. A 58 4307
Google Scholar
[23] Partovi M H 2011 Phys. Rev. A 84 052117
Google Scholar
[24] Friedland S, Gheorghiu V, Gour G 2013 Phys. Rev. Lett. 111 230401
Google Scholar
[25] Puchała Z, Rudnicki Ł, Życzkowski K 2013 J. Phys. A 46 272002
Google Scholar
[26] Nielsen M A, Chuang I L (translated by Zheng D Z and Zhao Q C) 2005 Quantum Computation and Quantum Information (Beijing: Tsinghua University Press) pp155–157
[27] Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752
Google Scholar
[28] Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757
Google Scholar
[29] Xu Z Y, Zhu S Q, Yang W L 2012 Appl. Phys. Lett. 101 244105
Google Scholar
[30] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105
Google Scholar
[31] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
Google Scholar
[32] Hu M L, Fan H 2013 Phys. Rev. A 88 014105
Google Scholar
[33] Bera M N, Prabhu R, Sen (De) A, Sen U 2012 Phys. Rev. A 86 012319
Google Scholar
[34] Coles P J, Piani M 2014 Phys. Rev. A 89 022112
Google Scholar
[35] Adabi F, Salimi S, Haseli S 2016 Phys. Rev. A 93 062123
Google Scholar
[36] Haseli S, Ahmadi F 2019 Eur. Phys. J. D 73 65
Google Scholar
[37] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204
Google Scholar
[38] Liu S, Mu L Z, Fan H 2015 Phys. Rev. A 91 042133
Google Scholar
[39] Zhang J, Zhang Y, Yu C S 2015 Sci. Rep. 5 11701
Google Scholar
[40] Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2019 Quantum Inf. Process. 18 13
Google Scholar
[41] Hu M L, Fan H 2013 Phys. Rev. A 87 022314
Google Scholar
[42] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[43] Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206
Google Scholar
[44] Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2020 Phys. Rev. A 102 052227
Google Scholar
[45] Yao Y B, Wang D, Ming F, Ye L 2020 J. Phys. B: At. Mol. Opt. Phys. 53 035501
Google Scholar
[46] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Sci. Rep. 7 1066
Google Scholar
[47] Wang D, Shi W N, Ming F, Hoehn R D, Sun W Y, Ye L, Kais S 2018 Quantum Inf. Process. 17 335
Google Scholar
[48] Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977
Google Scholar
[49] Karpat G, Piilo J, Maniscalco S 2015 EPL 111 50006
Google Scholar
[50] Chen P F, Ye L, Wang D 2019 Eur. Phys. J. D 73 108
Google Scholar
[51] Feng J, Zhang Y Z, Gould M D, Fan H 2015 Phys. Lett. B 743 198
Google Scholar
[52] Huang J L, Shu F W, Xiao Y L, Yung M H 2018 Eur. Phys. J. C 78 545
Google Scholar
[53] Zhang Z Y, Liu J M, Hu Z F, Wang Y Z 2018 Ann. Phys. 530 1800208
Google Scholar
[54] Ming F, Wang D, Ye L 2019 Ann. Phys. 531 1900014
Google Scholar
[55] Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S, Ye L 2018 Ann. Phys. 530 1800080
Google Scholar
[56] Huang A J, Wang D, Wang J M, Shi J D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 204
Google Scholar
[57] Wang D, Ming F, Huang A J, Sun W Y, Ye L 2017 Laser Phys. Lett. 14 095204
Google Scholar
[58] Ming F, Wang D, Shi W N, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 89
Google Scholar
[59] Wang D, Huang A J, Ming F, Sun W Y, Lu H P, Liu C C, Ye L 2017 Laser Phys. Lett. 14 065203
Google Scholar
[60] Zheng X, Zhang G F 2017 Quantum Inf. Process. 16 1
Google Scholar
[61] Huang Z M 2018 Laser Phys. Lett. 15 025203
Google Scholar
[62] Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267
Google Scholar
[63] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601
Google Scholar
[64] Zhang Z Y, Wei D X, Liu J M 2018 Laser Phys. Lett. 15 065207
Google Scholar
[65] Shi W N, Ming F, Wang D, Ye L 2019 Quantum Inf. Process. 18 70
Google Scholar
[66] Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802
Google Scholar
[67] Ju F H, Zhang Z Y, Liu J M 2020 Commun. Theor. Phys. 72 125102
Google Scholar
[68] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205
Google Scholar
[69] Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800
Google Scholar
[70] Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728
Google Scholar
[71] Ming F, Wang D, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 9
Google Scholar
[72] Zhang Y L, Fang M F, Kang G D, Zhou Q P 2018 Quantum Inf. Process. 17 62
Google Scholar
[73] Chen P F, Sun W Y, Ming F, Huang A J, Wang D, Ye L 2019 Laser Phys. Lett. 15 015206
[74] Haseil S, Dolatkhah H, Salimi S, Khorashad A S 2019 Laser Phys. Lett. 16 045207
Google Scholar
[75] Guo Y N, Fang M F, Tian Q L, Li Z D, Zeng K 2018 Laser Phys. Lett. 15 105205
Google Scholar
[76] Su Q, Al-Amri M, Davidovich L, Suhail Zubairy M 2010 Phys. Rev. A 82 052323
Google Scholar
[77] Huang A J, Shi J D, Wang D, Ye L 2017 Quantum Inf. Process. 16 46
Google Scholar
[78] Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243
[79] Shi W N, Wang D, Sun W Y, Ming F, Huang A J, Ye L 2018 Laser Phys. Lett. 15 075202
Google Scholar
[80] Yu M, Fang M F 2017 Quantum Inf. Process. 16 213
Google Scholar
[81] Adabi F, Haseli S, Salimi S 2016 EPL 115 60004
Google Scholar
[82] Hu M L, Fan H 2012 Phys. Rev. A 86 032338
Google Scholar
[83] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
Google Scholar
[84] Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402
Google Scholar
[85] Walborn S P, Salles A, Gomes R M, Toscano F, Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
Google Scholar
[86] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G, Howell J C 2013 Phys. Rev. A 87 062103
Google Scholar
[87] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L, Chen K 2016 Phys. Rev. A 93 012108
Google Scholar
[88] Vadhan S P 2012 Found. Trends Theor. Comput. Sci. 7 1
Google Scholar
[89] Canetti R 2001 Proc. IEEE Symposium on Foundations of Computer Science 2001 Newport Beach, CA, USA, October 8–11, 2001 p136–145
[90] Unruh D 2010 Proceedings of 29th Annual International Conference on Theory and Applications of Cryptographic Techniques France, May 30–June 03, 2010 pp486–505
[91] Mclnnes J 1987 Technical Report 194/87, Department of Computer Science, University of Toronto
[92] Impagliazzo R, Levin L A, Luby M 1989 Proceedings of ACM STOC 1989 Washington, Seattle, USA, May 14–17, 1989 pp12–24
[93] Impagliazzo R, Zuckerman D 1989 Proceedings of the 30th Annual Symp On Foundations of Computer Science Research Triangle Park, North Carolina, USA, October 30-November 01, 1989 pp248–253
[94] Renner R 2005 Ph.D. Dissertation (Zurich: ETH)
[95] Renner R, König R 2005 Proceedings of the 2nd Theory of Cryptography Conference Cambridge, England, February 10–12, 2005 pp407–425
[96] Gavinsky D, Kempe J, Kerenidis I, Raz R, de Wolf R 2009 SIAM J. Comput. 38 1695
Google Scholar
[97] Tomamichel M, Renner R 2011 Phys. Rev. Lett. 106 110506
Google Scholar
[98] Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524
Google Scholar
[99] Vallone G, Marangon D G, Tomasin M, Villoresi P 2014 Phys. Rev. A 90 052327
Google Scholar
[100] Miller C A, Shi Y 2014 Proceedings of ACM STOC 2014 New York, USA, May 31–June 03 2014 pp417–426
[101] Wootters W, Zurek W H 1979 Phys. Rev. D 19 473
Google Scholar
[102] Jaeger G, Shimony A, Vaidman L 1995 Phys. Rev. A 51 54
Google Scholar
[103] Englert B G 1996 Phys. Rev. Lett. 77 2154
Google Scholar
[104] Englert B G, Bergou J A 2000 Opt. Commun. 179 337
Google Scholar
[105] Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002
Google Scholar
[106] Dürr S, Rempe G 2000 Am. J. Phys. 68 1021
Google Scholar
[107] Busch P, Shilladay C 2006 Phys. Rep. 435 1
Google Scholar
[108] Coles P J, Kaniewski J, Wehner S 2014 Nat. Commun. 5 5814
Google Scholar
[109] Bosyk G M, Portesi M, Holik F, Plastino A 2013 Phys. Scr. 87 065002
Google Scholar
[110] Vaccaro J A 2011 Proc. R. Soc. A 468 1065
[111] Englert B G, Kaszlikowski D, Kwek L C, Chee W H 2008 Int. J. Quantum Inf. 06 129
Google Scholar
[112] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing 1984 Bangalore, India, December 10–12 1984 pp175–179
[113] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
[114] Scarani V, Bechmann-Pasquinucci H, Cerf N, Dusek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
Google Scholar
[115] Wootters W K, Zurek W H 1982 Nature 299 802
Google Scholar
[116] Mayers D 1996 Collection in Lecture Notes in Computer Science (Springer, New York) p343
[117] Biham E, Boyer M, Boykin P O, Mor T, Roychowdhury V 2006 J. Cryptol. 19 381
Google Scholar
[118] Lo H K, Chau H F 1999 Science 283 2050
Google Scholar
[119] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
Google Scholar
[120] Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902
Google Scholar
[121] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
Google Scholar
[122] Koashi M 2006 J. Phys. Conf. Ser. 36 98
Google Scholar
[123] Dupuis F, Fawzi O, Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
Google Scholar
[124] König R, Wehner S, Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962
Google Scholar
[125] Gühne O, Tóth G 2009 Phys. Rep. 474 1
Google Scholar
[126] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
Google Scholar
[127] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
Google Scholar
[128] Coles P J, Yu L, Gheorghiu V, Griffiths R 2011 Phys. Rev. A 83 062338
Google Scholar
[129] Luo S L 2005 Theor. Math. Phys. 143 681
Google Scholar
[130] Yang Y Y, Ye L, Wang D 2020 Ann. Phys. 532 2000062
Google Scholar
[131] Cao Y, Wang D, Fan X G, Ming F, Wang Z Y, Ye L 2021 Commun. Theor. Phys. 73 015101
Google Scholar
[132] Ming F, Song X K, Ling J J, Ye L, Wang D 2020 Eur. Phys. J. C 80 275
Google Scholar
[133] Berta M, Wehner S, Wilde M M 2016 New J. Phys. 18 073004
Google Scholar
[134] IBM 2016 “IBM Quantum Experience.”
[135] Ma W C, Ma Z H, Wang H Y, Chen Z H, Liu Y, Kong F, Li Z K, Peng X H, Shi M J, Shi F Z, Fei S M, Du J F 2016 Phys. Rev. Lett. 116 160405
Google Scholar
[136] Ringbauer M, Biggerstaff D N, Broome M A, Fedrizzi A, Branciard C, White A G 2014 Phys. Rev. Lett. 112 020401
Google Scholar
[137] Zhou F, Yan L L, Gong S J, Ma Z H, He J Z, Xiong T P, Chen L, Yang W L, Feng M, Vedral V 2016 Sci. Adv. 2 e1600578
Google Scholar
[138] Romera E, Calixto M 2015 J. Phys. Condens. Matter 27 175003
Google Scholar
[139] Xiong S J, Sun Z, Liu J M 2020 Laser Phys. Lett. 17 095203
Google Scholar
[140] Feng J, Zhang Y Z, Gould M D, Fan H 2013 Phys. Lett. B 726 527
Google Scholar
[141] Jia L, Tian Z, Jing J 2015 Ann. Phys. 353 37
Google Scholar
[142] Hayden P, Preskill J 2007 J. High Energy Phys. 09 120
-
图 2 玩家Alice和Bob的猜测游戏. 首先, Bob准备
$ \rho_A $ 并把A发送给Alice. 然后, Alice以相等的概率进行$ \mathbb{Q} $ 或$ {\mathbb{R}} $ 测量, 并将测量选项存储在Θ中. 第三, Alice得出测量结果并将其存储在K, 且向Bob透露测量选择Θ. Bob的任务是猜测K (给定Θ)Fig. 2. A guessing game between players Alice and Bob. First, Bob prepares
$ \rho_A $ and sends A to Alice. Then, Alice performs measurement$ \mathbb{Q} $ or$ {\mathbb{R}} $ with equal probability on A, and stores the measurement options in Θ. Third, Alice stores the measurement result in the K bit and tells Bob about her option Θ. Bob’s task is to guess K (given Θ).图 3 量子存储下的不确定游戏. 首先, Bob准备态
${\boldsymbol{\rho}} _{AB}$ , 然后把子系统A发送给Alice. 第二, Alice对A进行${Q} $ 和$ {{R}} $ 测量, 然后向Bob告知测量选择Θ. Bob的任务是正确猜测KFig. 3. The guessing game with a quantum memory system. First, Bob prepares
$ \rho_{AB} $ and sends A to Alice, Then, Alice performs measurement$ {Q} $ or$ {{R}} $ on A, and stores the measurement options in Θ. Third, Alice tells Bob about her option Θ. Bob’s task is to guess K correctly图 4 三粒子量子存储器设置图. 首先, 粒子源准备
$ {\boldsymbol{\rho}} _{ABC} $ , 并将A发送给Alice, B发送给Bob, C给Charlie. 接着, Alice在A上进行X或Z测量, 然后在已经给Bob粒子B的情况下, 询问Bob关于Alice的X测量结果的不确定性, 在已经给Charlie粒子C的情况下询问Charlie有关Alice的Z测量结果的不确定性. 只有他们两个同时猜出结果K这个游戏才能算Bob和Charlie胜利Fig. 4. The tripartite quantum memory setup. First, the particle source prepares
$ {\boldsymbol{\rho }}_{ABC} $ , and sends A to Alice, B to Bob, and C to Charlie. Next, Alice performs measurement X or Z on A, and asks Bob about the uncertainty of Alice’s X measurement outcome, ask Charlie about the uncertainty of Alice’s Z measurement outcome. Only both of them guessed that the output is K, the game can be considered a victory for Bob and Charlie.图 5 这两张图引用自参考文献[44] 中的第三, 四幅图, 图片展示了Ming等的结果(图上的Ref. [45]就是本文参考文献[43])和Dolatkhah等结果的对比, 这里选取的测量是泡利测量:
$ X = {\sigma _x}, Z = {\sigma _z} $ . 图中蓝线是式(61)左式, 红线对应右式, 重合表明对应的量子态、界与不确定度重合. (a) 广义W态量子存储下的熵不确定度及下界的图像. (b)混合三比特态量子存储下的熵不确定度及下界的图像Fig. 5. These two pictures are quoted in the third and fourth pictures in the reference [44].The picture shows the comparison of the results of Ming et al. (Ref. [45] on the picture is the reference [43] in this text) and Dolatkhah et al.. The measurement selected here is the Pauli measurement:
$ X = {\sigma _x}, Z = {\sigma _z} $ . The blue line in the figure is the left side of the formula (61), and the red line corresponds to the right side. Their overlap indicates the corresponding quantum state, and the bounds coincide with the uncertainty. (a) Different lower bounds of the tripartite quantum-memory-assisted entropic uncertainty relation (QMA-EUR) for the generalized W state; (b) Different lower bounds of the tripartite QMA-EUR for symmetric family of mixed three-qubit states图 6 这张图引用自参考文献[105]中的第18幅图, 展示的是一个Mach-Zehnder单光子干涉仪. 一个光子撞击分束器, 然后通过
$ {{Z}} $ 的基态$ | 0 \rangle, | 1 \rangle $ 标记这两个可能的路径, 光子可能与干涉仪内部的某个环境E相互作用. 然后将一个相位ϕ应用于下路径, 再将这两个路径在第二个波束分束器上重新组合. 最后在$ {\rm{D}}_0 $ 或$ {\rm{D}}_1 $ 处检测到光子Fig. 6. This picture is from the 18 th picture in the reference [105]. The picture shows a Mach-Zehnder single photon interferometer. A photon hits the beam splitter, and then we pass the ground state of
$ {{Z}} $ ($ | 0 \rangle, | 1 \rangle $ ) to mark these two possible paths. The photon may be related to an environment in the interferometer$ E $ Interaction. Then apply a phase ϕ to the lower path, and then recombine the two paths on the second beam splitter. Finally, a photon is detected at$ {\rm{D}}_0 $ or$ {\rm{D}}_1 $ -
[1] Heisenberg W 1927 Z. Phys. 43 172
Google Scholar
[2] Kennard E H 1927 Z. Phys. 44 326
Google Scholar
[3] Robertson H P 1929 Phys. Rev. 34 163
Google Scholar
[4] Deutsch D 1983 Phys. Rev. Lett. 50 631
Google Scholar
[5] Everett H 1957 Rev. Mod. Phys. 29 454
Google Scholar
[6] Hirschman I I 1957 Am. J. Math. 79 152
Google Scholar
[7] Kraus K 1987 Phys. Rev. D 35 3070
Google Scholar
[8] Maassen H, Uffink J 1988 Phys. Rev. Lett. 60 1103
Google Scholar
[9] Berta M, Christandl M, Colbeck R, Renes J M, Renner R 2010 Nat. Phys. 6 659
Google Scholar
[10] Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402
Google Scholar
[11] Schrödinger E 1930 Physikalisch-Mathematische Klasse 14 296
[12] Maccone L, Pati A K 2014 Phys. Rev. Lett. 113 260401
Google Scholar
[13] Wang K K, Zhan X, Bian Z H, Li J, Zhang Y S, Xue P 2016 Phys. Rev. A 93 052108
Google Scholar
[14] Xiao L, Wang K, Zhan X, Bian Z, Li J, Zhang Y, Xue P, Pati A K 2017 Opt. Express 25 17904
Google Scholar
[15] Fan B, Wang K K, Xiao L, Xue P 2018 Phys. Rev. A 98 032118
Google Scholar
[16] Białynicki-Birula I, Mycielski J 1975 Commun. Math. Phys. 44 129
Google Scholar
[17] Shannon C 1948 Bell Syst. Tech. J. 27 379
Google Scholar
[18] Korzekwa K, Lostaglio M, Jennings D, Rudolph T 2014 Phys. Rev. A 89 042122
Google Scholar
[19] Rényi A 1961 Proceedings of the 4th Berkeley Symposiumon Mathematical Statistics and Probability (Vol. 1) (Berkeley: University of California Press) pp547–561
[20] Dodonov V V, Dodonov A V 2015 Phys. Scr. 90 074049
Google Scholar
[21] Rastegin A E 2019 Ann. Phys. 531 1800466
Google Scholar
[22] Pegg D T 1998 Phys. Rev. A 58 4307
Google Scholar
[23] Partovi M H 2011 Phys. Rev. A 84 052117
Google Scholar
[24] Friedland S, Gheorghiu V, Gour G 2013 Phys. Rev. Lett. 111 230401
Google Scholar
[25] Puchała Z, Rudnicki Ł, Życzkowski K 2013 J. Phys. A 46 272002
Google Scholar
[26] Nielsen M A, Chuang I L (translated by Zheng D Z and Zhao Q C) 2005 Quantum Computation and Quantum Information (Beijing: Tsinghua University Press) pp155–157
[27] Li C F, Xu J S, Xu X Y, Li K, Guo G C 2011 Nat. Phys. 7 752
Google Scholar
[28] Prevedel R, Hamel D R, Colbeck R, Fisher K, Resch K J 2011 Nat. Phys. 7 757
Google Scholar
[29] Xu Z Y, Zhu S Q, Yang W L 2012 Appl. Phys. Lett. 101 244105
Google Scholar
[30] Pati A K, Wilde M M, Usha Devi A R, Rajagopal A K, Sudha 2012 Phys. Rev. A 86 042105
Google Scholar
[31] Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901
Google Scholar
[32] Hu M L, Fan H 2013 Phys. Rev. A 88 014105
Google Scholar
[33] Bera M N, Prabhu R, Sen (De) A, Sen U 2012 Phys. Rev. A 86 012319
Google Scholar
[34] Coles P J, Piani M 2014 Phys. Rev. A 89 022112
Google Scholar
[35] Adabi F, Salimi S, Haseli S 2016 Phys. Rev. A 93 062123
Google Scholar
[36] Haseli S, Ahmadi F 2019 Eur. Phys. J. D 73 65
Google Scholar
[37] Xie B F, Ming F, Wang D, Ye L, Chen J L 2021 Phys. Rev. A 104 062204
Google Scholar
[38] Liu S, Mu L Z, Fan H 2015 Phys. Rev. A 91 042133
Google Scholar
[39] Zhang J, Zhang Y, Yu C S 2015 Sci. Rep. 5 11701
Google Scholar
[40] Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2019 Quantum Inf. Process. 18 13
Google Scholar
[41] Hu M L, Fan H 2013 Phys. Rev. A 87 022314
Google Scholar
[42] Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[43] Ming F, Wang D, Fan X G, Shi W N, Ye L, Chen J L 2020 Phys. Rev. A 102 012206
Google Scholar
[44] Dolatkhah H, Haseli S, Salimi S, Khorashad A S 2020 Phys. Rev. A 102 052227
Google Scholar
[45] Yao Y B, Wang D, Ming F, Ye L 2020 J. Phys. B: At. Mol. Opt. Phys. 53 035501
Google Scholar
[46] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Sci. Rep. 7 1066
Google Scholar
[47] Wang D, Shi W N, Ming F, Hoehn R D, Sun W Y, Ye L, Kais S 2018 Quantum Inf. Process. 17 335
Google Scholar
[48] Chen M N, Wang D, Ye L 2019 Phys. Lett. A 383 977
Google Scholar
[49] Karpat G, Piilo J, Maniscalco S 2015 EPL 111 50006
Google Scholar
[50] Chen P F, Ye L, Wang D 2019 Eur. Phys. J. D 73 108
Google Scholar
[51] Feng J, Zhang Y Z, Gould M D, Fan H 2015 Phys. Lett. B 743 198
Google Scholar
[52] Huang J L, Shu F W, Xiao Y L, Yung M H 2018 Eur. Phys. J. C 78 545
Google Scholar
[53] Zhang Z Y, Liu J M, Hu Z F, Wang Y Z 2018 Ann. Phys. 530 1800208
Google Scholar
[54] Ming F, Wang D, Ye L 2019 Ann. Phys. 531 1900014
Google Scholar
[55] Wang D, Shi W N, Hoehn R D, Ming F, Sun W Y, Kais S, Ye L 2018 Ann. Phys. 530 1800080
Google Scholar
[56] Huang A J, Wang D, Wang J M, Shi J D, Sun W Y, Ye L 2017 Quantum Inf. Process. 16 204
Google Scholar
[57] Wang D, Ming F, Huang A J, Sun W Y, Ye L 2017 Laser Phys. Lett. 14 095204
Google Scholar
[58] Ming F, Wang D, Shi W N, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 89
Google Scholar
[59] Wang D, Huang A J, Ming F, Sun W Y, Lu H P, Liu C C, Ye L 2017 Laser Phys. Lett. 14 065203
Google Scholar
[60] Zheng X, Zhang G F 2017 Quantum Inf. Process. 16 1
Google Scholar
[61] Huang Z M 2018 Laser Phys. Lett. 15 025203
Google Scholar
[62] Ming F, Wang D, Shi W N, Huang A J, Du M M, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 267
Google Scholar
[63] Yang Y Y, Sun W Y, Shi W N, Ming F, Wang D, Ye L 2019 Front. Phys. 14 31601
Google Scholar
[64] Zhang Z Y, Wei D X, Liu J M 2018 Laser Phys. Lett. 15 065207
Google Scholar
[65] Shi W N, Ming F, Wang D, Ye L 2019 Quantum Inf. Process. 18 70
Google Scholar
[66] Li L J, Ming F, Shi W N, Ye L, Wang D 2021 Physica E 133 114802
Google Scholar
[67] Ju F H, Zhang Z Y, Liu J M 2020 Commun. Theor. Phys. 72 125102
Google Scholar
[68] Wang D, Ming F, Huang A J, Sun W Y, Shi J D, Ye L 2017 Laser Phys. Lett. 14 055205
Google Scholar
[69] Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800
Google Scholar
[70] Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728
Google Scholar
[71] Ming F, Wang D, Huang A J, Sun W Y, Ye L 2018 Quantum Inf. Process. 17 9
Google Scholar
[72] Zhang Y L, Fang M F, Kang G D, Zhou Q P 2018 Quantum Inf. Process. 17 62
Google Scholar
[73] Chen P F, Sun W Y, Ming F, Huang A J, Wang D, Ye L 2019 Laser Phys. Lett. 15 015206
[74] Haseil S, Dolatkhah H, Salimi S, Khorashad A S 2019 Laser Phys. Lett. 16 045207
Google Scholar
[75] Guo Y N, Fang M F, Tian Q L, Li Z D, Zeng K 2018 Laser Phys. Lett. 15 105205
Google Scholar
[76] Su Q, Al-Amri M, Davidovich L, Suhail Zubairy M 2010 Phys. Rev. A 82 052323
Google Scholar
[77] Huang A J, Shi J D, Wang D, Ye L 2017 Quantum Inf. Process. 16 46
Google Scholar
[78] Bender C M, Boettcher S 1988 Phys. Rev. Lett. 80 5243
[79] Shi W N, Wang D, Sun W Y, Ming F, Huang A J, Ye L 2018 Laser Phys. Lett. 15 075202
Google Scholar
[80] Yu M, Fang M F 2017 Quantum Inf. Process. 16 213
Google Scholar
[81] Adabi F, Haseli S, Salimi S 2016 EPL 115 60004
Google Scholar
[82] Hu M L, Fan H 2012 Phys. Rev. A 86 032338
Google Scholar
[83] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
Google Scholar
[84] Wiseman H M, Jones S J, Doherty A C 2007 Phys. Rev. Lett. 98 140402
Google Scholar
[85] Walborn S P, Salles A, Gomes R M, Toscano F, Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
Google Scholar
[86] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G, Howell J C 2013 Phys. Rev. A 87 062103
Google Scholar
[87] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L, Chen K 2016 Phys. Rev. A 93 012108
Google Scholar
[88] Vadhan S P 2012 Found. Trends Theor. Comput. Sci. 7 1
Google Scholar
[89] Canetti R 2001 Proc. IEEE Symposium on Foundations of Computer Science 2001 Newport Beach, CA, USA, October 8–11, 2001 p136–145
[90] Unruh D 2010 Proceedings of 29th Annual International Conference on Theory and Applications of Cryptographic Techniques France, May 30–June 03, 2010 pp486–505
[91] Mclnnes J 1987 Technical Report 194/87, Department of Computer Science, University of Toronto
[92] Impagliazzo R, Levin L A, Luby M 1989 Proceedings of ACM STOC 1989 Washington, Seattle, USA, May 14–17, 1989 pp12–24
[93] Impagliazzo R, Zuckerman D 1989 Proceedings of the 30th Annual Symp On Foundations of Computer Science Research Triangle Park, North Carolina, USA, October 30-November 01, 1989 pp248–253
[94] Renner R 2005 Ph.D. Dissertation (Zurich: ETH)
[95] Renner R, König R 2005 Proceedings of the 2nd Theory of Cryptography Conference Cambridge, England, February 10–12, 2005 pp407–425
[96] Gavinsky D, Kempe J, Kerenidis I, Raz R, de Wolf R 2009 SIAM J. Comput. 38 1695
Google Scholar
[97] Tomamichel M, Renner R 2011 Phys. Rev. Lett. 106 110506
Google Scholar
[98] Tomamichel M, Schaffner C, Smith A, Renner R 2011 IEEE Trans. Inf. Theory 57 5524
Google Scholar
[99] Vallone G, Marangon D G, Tomasin M, Villoresi P 2014 Phys. Rev. A 90 052327
Google Scholar
[100] Miller C A, Shi Y 2014 Proceedings of ACM STOC 2014 New York, USA, May 31–June 03 2014 pp417–426
[101] Wootters W, Zurek W H 1979 Phys. Rev. D 19 473
Google Scholar
[102] Jaeger G, Shimony A, Vaidman L 1995 Phys. Rev. A 51 54
Google Scholar
[103] Englert B G 1996 Phys. Rev. Lett. 77 2154
Google Scholar
[104] Englert B G, Bergou J A 2000 Opt. Commun. 179 337
Google Scholar
[105] Coles P J, Berta M, Tomamichel M, Wehner S 2017 Rev. Mod. Phys. 89 015002
Google Scholar
[106] Dürr S, Rempe G 2000 Am. J. Phys. 68 1021
Google Scholar
[107] Busch P, Shilladay C 2006 Phys. Rep. 435 1
Google Scholar
[108] Coles P J, Kaniewski J, Wehner S 2014 Nat. Commun. 5 5814
Google Scholar
[109] Bosyk G M, Portesi M, Holik F, Plastino A 2013 Phys. Scr. 87 065002
Google Scholar
[110] Vaccaro J A 2011 Proc. R. Soc. A 468 1065
[111] Englert B G, Kaszlikowski D, Kwek L C, Chee W H 2008 Int. J. Quantum Inf. 06 129
Google Scholar
[112] Bennett C H, Brassard G 1984 Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing 1984 Bangalore, India, December 10–12 1984 pp175–179
[113] Ekert A K 1991 Phys. Rev. Lett. 67 661
Google Scholar
[114] Scarani V, Bechmann-Pasquinucci H, Cerf N, Dusek M, Lütkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301
Google Scholar
[115] Wootters W K, Zurek W H 1982 Nature 299 802
Google Scholar
[116] Mayers D 1996 Collection in Lecture Notes in Computer Science (Springer, New York) p343
[117] Biham E, Boyer M, Boykin P O, Mor T, Roychowdhury V 2006 J. Cryptol. 19 381
Google Scholar
[118] Lo H K, Chau H F 1999 Science 283 2050
Google Scholar
[119] Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441
Google Scholar
[120] Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127902
Google Scholar
[121] Grosshans F, Cerf N J 2004 Phys. Rev. Lett. 92 047905
Google Scholar
[122] Koashi M 2006 J. Phys. Conf. Ser. 36 98
Google Scholar
[123] Dupuis F, Fawzi O, Wehner S 2015 IEEE Trans. Inf. Theory 61 1093
Google Scholar
[124] König R, Wehner S, Wullschleger J 2012 IEEE Trans. Inf. Theory 58 1962
Google Scholar
[125] Gühne O, Tóth G 2009 Phys. Rep. 474 1
Google Scholar
[126] Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865
Google Scholar
[127] Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401
Google Scholar
[128] Coles P J, Yu L, Gheorghiu V, Griffiths R 2011 Phys. Rev. A 83 062338
Google Scholar
[129] Luo S L 2005 Theor. Math. Phys. 143 681
Google Scholar
[130] Yang Y Y, Ye L, Wang D 2020 Ann. Phys. 532 2000062
Google Scholar
[131] Cao Y, Wang D, Fan X G, Ming F, Wang Z Y, Ye L 2021 Commun. Theor. Phys. 73 015101
Google Scholar
[132] Ming F, Song X K, Ling J J, Ye L, Wang D 2020 Eur. Phys. J. C 80 275
Google Scholar
[133] Berta M, Wehner S, Wilde M M 2016 New J. Phys. 18 073004
Google Scholar
[134] IBM 2016 “IBM Quantum Experience.”
[135] Ma W C, Ma Z H, Wang H Y, Chen Z H, Liu Y, Kong F, Li Z K, Peng X H, Shi M J, Shi F Z, Fei S M, Du J F 2016 Phys. Rev. Lett. 116 160405
Google Scholar
[136] Ringbauer M, Biggerstaff D N, Broome M A, Fedrizzi A, Branciard C, White A G 2014 Phys. Rev. Lett. 112 020401
Google Scholar
[137] Zhou F, Yan L L, Gong S J, Ma Z H, He J Z, Xiong T P, Chen L, Yang W L, Feng M, Vedral V 2016 Sci. Adv. 2 e1600578
Google Scholar
[138] Romera E, Calixto M 2015 J. Phys. Condens. Matter 27 175003
Google Scholar
[139] Xiong S J, Sun Z, Liu J M 2020 Laser Phys. Lett. 17 095203
Google Scholar
[140] Feng J, Zhang Y Z, Gould M D, Fan H 2013 Phys. Lett. B 726 527
Google Scholar
[141] Jia L, Tian Z, Jing J 2015 Ann. Phys. 353 37
Google Scholar
[142] Hayden P, Preskill J 2007 J. High Energy Phys. 09 120
计量
- 文章访问数: 10288
- PDF下载量: 480
- 被引次数: 0