搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高反射腔镜双折射效应对腔增强光谱技术的影响

刘建鑫 赵刚 周月婷 周晓彬 马维光

引用本文:
Citation:

高反射腔镜双折射效应对腔增强光谱技术的影响

刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光
cstr: 32037.14.aps.71.20212090

Birefringence effect of high reflectivity cavity mirrors and its influence on cavity enhanced spectroscopy

Liu Jian-Xin, Zhao Gang, Zhou Yue-Ting, Zhou Xiao-Bin, Ma Wei-Guang
cstr: 32037.14.aps.71.20212090
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在吸收光谱技术中, 使用光学腔增长激光与气体介质的作用路径, 可提升探测灵敏度. 然而, 高反射率腔镜会存在双折射效应, 导致光学腔产生两个本征偏振态, 入射光在两个偏振方向相移的不同会导致腔模的分裂, 会引起腔增强光谱信号以及腔衰荡光谱信号的扭曲. 本文观测到了双折射效应下腔增强信号的频率分裂现象, 并给出了函数模型, 拟合结果表明其可以准确得到透射腔模中不同偏振光的比例. 根据上述比例, 可给出考虑不同耦合效率、双折射效应下的腔衰荡信号模型, 实验结果表明相较于传统e指数模型, 本文模型可更精确描述腔衰荡信号, 得到拟合残差的标准偏差最大抑制了9倍. 该分析有利于改善腔衰荡信号信噪比和不确定性, 提升其浓度反演准确度.
    In laser absorption spectroscopy, in order to improve gas detection sensitivity, optical cavity with high finesse is used to prolong the interaction path between the laser and the absorber. However, the birefringence of high reflectivity cavity mirrors generates two polarization eigenstates, and owing to the different phase shifts along the two directions, the cavity mode will be split. In this work, we first measure the cavity enhanced signal under birefringence and observe the mode split. And a model to mimic cavity enhanced spectroscopy under birefringent effect is presented, which can accurately fit the different polarization ratios at transmission. Finally, we propose a cavity ring-down signal model considering different coupling efficiencies of the two polarization directions of the cavity. Comparing with the conventional exponential model, the standard deviation of residual maximum suppression is as high as 9 times. And this analysis is helpful in improving the signal-to-noise ratio and uncertainty of cavity ring-down signal and increasing the accuracy of concentration inversion.
      通信作者: 赵刚, gangzhao@sxu.edu.cn ; 马维光, mwg@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304203)、国家自然科学基金(批准号: 61875107, 61905136, 61905134, 62175139)和山西省高等学校科技创新项目(批准号: 2019L0062)资助的课题
      Corresponding author: Zhao Gang, gangzhao@sxu.edu.cn ; Ma Wei-Guang, mwg@sxu.edu.cn
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61875107, 61905136, 61905134, 62175139), and the Scientific and Technological Innovation Project of Colleges and Universities in Shanxi Province, China (Grant No. 2019L0062).
    [1]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature. Photon. 6 687Google Scholar

    [3]

    Jordan B C, William K, Martin M F, Eric G 2001 Appl. Opt. 40 3753Google Scholar

    [4]

    Ishibashi C, Sasada H 1999 Jpn. J. Appl. Phys. 38 920Google Scholar

    [5]

    Robert C 2007 Appl. Opt. 46 5408Google Scholar

    [6]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [7]

    Liu J, Zhou Y, Guo S, Hou J, Zhao G, Ma W, Wu Y, Dong L, Zhang L, Yin W, Xiao L, Axner O, Jia S 2019 Opt Express. 27 1249Google Scholar

    [8]

    Livio G, Richard F W, Leo H 1999 J. Opt. Soc. Am. B 16 2247Google Scholar

    [9]

    赵卫雄, 高晓明, 张为俊, 黄 腾 2006 光学学报 26 1260Google Scholar

    Zhao W X, Gao X M, Zhang W J, Huang T 2006 Acta Opt. Sin. 26 1260Google Scholar

    [10]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 61 060702Google Scholar

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta. Phys. Sin. 61 060702Google Scholar

    [11]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708Google Scholar

    [12]

    Zhao G, Bailey D M, Fleisher A J, Hodges J T, Lehmann K K 2020 Phys. Rev. A 101 062509Google Scholar

    [13]

    胡纯栋, 焉镜洋, 王 艳, 梁立振 2018 光谱学与光谱分析 38 346

    Hu C D, Y J Y, W Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346

    [14]

    Li Z X, Ma W G, Fu X F, Tan W, Zhao G, Dong L, Zhang L, Yin W B, Jia S T 2013 Appl. Phys. Express 6 072402Google Scholar

    [15]

    Ye J, Ma L S, Hall J 1996 Opt. Lett. 21 1000Google Scholar

    [16]

    Zhao G, Hausmaninger T, Ma W, Axner O 2018 Opt. Lett. 43 715Google Scholar

    [17]

    肖石磊, 李斌成 2020 光电工程 47 190068

    Xiao S L, Li B C 2020 Opto-Electronic Engineering 47 190068

    [18]

    Winkler G, Perner L W, Truong G W, Zhao G, Bachmann D, Mayer A S, Fellinger J, Follman D, Heu P, Deutsch C, Bailey D M, Peelaers H, Puchegger S, Fleisher A J, Cole G D, Heckl O H 2021 Optica 8 686Google Scholar

    [19]

    Xiao S, Li B, Wang J 2020 Appl. Opt. 59 A99Google Scholar

    [20]

    付小芳, 赵 刚, 马维光, 谭巍, 李志新, 董 磊, 张雷, 尹王保, 贾锁堂 2014 光谱学与光谱分析 34 1456Google Scholar

    Fu X F, Zhao G, Ma W G, Tan W, Li Z X, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 1456Google Scholar

    [21]

    Huang H F, Lehmann K K 2008 Appl. Opt. 47 3817Google Scholar

    [22]

    Fleisher A J, Long D A, Liu Q N, Hodges J T 2016 Phys. Rev. A 93 013833Google Scholar

  • 图 1  实验装置

    Fig. 1.  Experimental setup.

    图 2  测量的透射腔模信号

    Fig. 2.  Measured cavity transmission signal.

    图 3  双折射导致的频率间隔与腔内气压的函数关系

    Fig. 3.  The frequency splitting of birefringence as a function of intracavity pressure.

    图 4  拟合不同偏振分量的透射腔模

    Fig. 4.  Fitting transmission cavity modes with different polarization components.

    图 5  实际测量的腔衰荡信号(黑点)和单e指数拟合结果(a)及拟合残差(c)和NEM模型拟合结果(b)及拟合残差(d)

    Fig. 5.  The measured cavity ring-down signal (black spot) and the single-exponential fitting result (a); the residual of the single-exponential fitting result (c); NEM fitting result (b) and the residual(d), respectively.

    图 6  两种模型拟合不同偏振角度下的腔衰荡

    Fig. 6.  Ftting the cavity ring-down time by two models at different polarization angles.

    Baidu
  • [1]

    Strekalov D V, Thompson R J, Baumgartel L M, Grudinin I S, Yu N 2011 Opt. Express 19 14495Google Scholar

    [2]

    Kessler T, Hagemann C, Grebing C, Legero T, Sterr U, Riehle F, Martin M J, Chen L, Ye J 2012 Nature. Photon. 6 687Google Scholar

    [3]

    Jordan B C, William K, Martin M F, Eric G 2001 Appl. Opt. 40 3753Google Scholar

    [4]

    Ishibashi C, Sasada H 1999 Jpn. J. Appl. Phys. 38 920Google Scholar

    [5]

    Robert C 2007 Appl. Opt. 46 5408Google Scholar

    [6]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [7]

    Liu J, Zhou Y, Guo S, Hou J, Zhao G, Ma W, Wu Y, Dong L, Zhang L, Yin W, Xiao L, Axner O, Jia S 2019 Opt Express. 27 1249Google Scholar

    [8]

    Livio G, Richard F W, Leo H 1999 J. Opt. Soc. Am. B 16 2247Google Scholar

    [9]

    赵卫雄, 高晓明, 张为俊, 黄 腾 2006 光学学报 26 1260Google Scholar

    Zhao W X, Gao X M, Zhang W J, Huang T 2006 Acta Opt. Sin. 26 1260Google Scholar

    [10]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 61 060702Google Scholar

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta. Phys. Sin. 61 060702Google Scholar

    [11]

    Zalicki P, Zare R N 1995 J. Chem. Phys. 102 2708Google Scholar

    [12]

    Zhao G, Bailey D M, Fleisher A J, Hodges J T, Lehmann K K 2020 Phys. Rev. A 101 062509Google Scholar

    [13]

    胡纯栋, 焉镜洋, 王 艳, 梁立振 2018 光谱学与光谱分析 38 346

    Hu C D, Y J Y, W Y, Liang L Z 2018 Spectrosc. Spect. Anal. 38 346

    [14]

    Li Z X, Ma W G, Fu X F, Tan W, Zhao G, Dong L, Zhang L, Yin W B, Jia S T 2013 Appl. Phys. Express 6 072402Google Scholar

    [15]

    Ye J, Ma L S, Hall J 1996 Opt. Lett. 21 1000Google Scholar

    [16]

    Zhao G, Hausmaninger T, Ma W, Axner O 2018 Opt. Lett. 43 715Google Scholar

    [17]

    肖石磊, 李斌成 2020 光电工程 47 190068

    Xiao S L, Li B C 2020 Opto-Electronic Engineering 47 190068

    [18]

    Winkler G, Perner L W, Truong G W, Zhao G, Bachmann D, Mayer A S, Fellinger J, Follman D, Heu P, Deutsch C, Bailey D M, Peelaers H, Puchegger S, Fleisher A J, Cole G D, Heckl O H 2021 Optica 8 686Google Scholar

    [19]

    Xiao S, Li B, Wang J 2020 Appl. Opt. 59 A99Google Scholar

    [20]

    付小芳, 赵 刚, 马维光, 谭巍, 李志新, 董 磊, 张雷, 尹王保, 贾锁堂 2014 光谱学与光谱分析 34 1456Google Scholar

    Fu X F, Zhao G, Ma W G, Tan W, Li Z X, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 1456Google Scholar

    [21]

    Huang H F, Lehmann K K 2008 Appl. Opt. 47 3817Google Scholar

    [22]

    Fleisher A J, Long D A, Liu Q N, Hodges J T 2016 Phys. Rev. A 93 013833Google Scholar

计量
  • 文章访问数:  6386
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-11
  • 修回日期:  2021-12-15
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回
Baidu
map