搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

荧光法测定半导体禁带宽度

时凯居 李睿 李长富 王成新 徐现刚 冀子武

引用本文:
Citation:

荧光法测定半导体禁带宽度

时凯居, 李睿, 李长富, 王成新, 徐现刚, 冀子武

Luminescence measurement of band gap

Shi Kai-Ju, Li Rui, Li Chang-Fu, Wang Cheng-Xin, Xu Xian-Gang, Ji Zi-Wu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 光学带隙或禁带宽度是半导体材料的一个重要特征参数. 本文以3个具有代表性的InGaN/GaN多量子阱结构作为研究对象, 深入探讨了荧光法测定某个目标温度下InGaN阱层的光学带隙所需要满足的测试条件. 由于InGaN阱层是一种多元合金且受到来自GaN垒层的应力作用, 所以该阱层中不仅存在着杂质/缺陷相关的非辐射中心, 也存在着组分起伏诱发的局域势起伏以及极化场诱发的量子限制斯塔克效应. 因此, 为了获得目标温度下InGaN阱层的较为精确的光学带隙, 提出了荧光测量至少应满足的测试条件, 即必须消除该目标温度下非辐射中心、局域中心以及量子限制斯塔克效应对辐射过程的影响.
    Optical band gap or band gap is an important characteristic parameter of semiconductor materials. In this study, several representative InGaN/GaN multiple quantum well structures are taken as the research objects, and the test conditions that need to be met for the luminescence measurement of the optical band gap of the InGaN well layer at a certain target temperature are discussed in depth. Since the InGaN well layer is a multi-element alloy and is subjected to stress from the GaN barrier layer, there exist not only impurity/defect-related non-radiation centers in the well layer, but also localized potential fluctuation induced by composition fluctuation and quantum confinement Stark effect (QCSE) induced by polarization field. Therefore, in order to obtain a more accurate optical band gap of the InGaN well layer, we propose the following test conditions that the luminescence measurement should meet at least, that is, the influence of the non-radiation centers, the localized centers and the QCSE on the emission process at the target temperature must be eliminated. Although these test conditions need to be further improved, it is expected that this test method can provide valuable guidance or ideas for measuring the semiconductor optical band gap.
      通信作者: 冀子武, jiziwu@sdu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872167, 51672163)资助的课题.
      Corresponding author: Ji Zi-Wu, jiziwu@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872167, 51672163).
    [1]

    Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447Google Scholar

    [2]

    Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411Google Scholar

    [3]

    Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [4]

    Ghobadi N 2013 Int. Nano Lett. 3 2Google Scholar

    [5]

    Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163Google Scholar

    [6]

    Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130Google Scholar

    [7]

    Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538Google Scholar

    [8]

    Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610Google Scholar

    [9]

    Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615Google Scholar

    [10]

    Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042Google Scholar

    [11]

    Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519Google Scholar

    [12]

    Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57Google Scholar

    [13]

    Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453

    [14]

    Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560

    [15]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691Google Scholar

    [16]

    Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901

    [17]

    De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304Google Scholar

    [18]

    Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250Google Scholar

    [19]

    Cho C Y, Park S J 2016 Opt. Express 24 7488Google Scholar

    [20]

    Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176Google Scholar

    [21]

    Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525Google Scholar

    [22]

    Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503Google Scholar

    [23]

    Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871Google Scholar

    [24]

    Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129Google Scholar

    [25]

    Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523Google Scholar

    [26]

    Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301Google Scholar

    [27]

    Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932Google Scholar

    [28]

    Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143Google Scholar

    [29]

    Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803Google Scholar

    [30]

    Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508

    [31]

    Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2Google Scholar

    [32]

    Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116

    [33]

    Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090Google Scholar

    [34]

    Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1Google Scholar

    [35]

    Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801Google Scholar

  • 图 1  样品结构示意图

    Fig. 1.  Schematic diagrams of samples.

    图 2  注入电流为5 µA时, SG1的EL峰位能量和半高全宽(FWHM)的温度依赖性. 插图为5 µA时SB的EL峰位能量和FWHM的温度依赖性

    Fig. 2.  Temperature dependence of the EL peak energy and FWHM for SG1 measured at 5 µA. The inset is that for SB measured at 5 µA.

    图 3  注入电流为0.001 mA (a), 0.2 mA (b), 0.5 mA (c), 2 mA (d), 5 mA (e)和350 mA (f)时SG2的EL峰位能量和FWHM的温度依赖性

    Fig. 3.  Temperature dependences of the EL peak energy and FWHM for SG2 measured at 0.001 mA (a), 0.2 mA (b), 0.5 mA (c), 2 mA (d), 5 mA (e), and 350 mA (f).

    图 4  注入电流为0.01 mA (a), 5 mA (b)和200 mA (c)时SB的EL峰位能量和FWHM的温度依赖性(虚线代表Varshni曲线)

    Fig. 4.  Temperature dependences of the EL peak energy and FWHM for SB measured at 0.01 mA (a), 5 mA (b), and 200 mA (c). The dashed lines represent Varshni curves.

    图 5  温度为300 K时SB的EL峰位能量和FWHM的注入电流依赖性

    Fig. 5.  EL peak energy and FWHM as a function of injection current for SB at 300 K.

    表 1  样品的具体参数

    Table 1.  Specific parameters of samples.

    样品衬底成核层阱/垒厚度/nmIn组分/%文献
    SG1SiAlN2 / 1426[23]
    SG2SiAlN2 / 1432[24]
    SBAl2O3GaN2 / 1015[25, 26]
    下载: 导出CSV
    Baidu
  • [1]

    Srikant V, Clarke D 1998 J. Appl. Phys. 83 5447Google Scholar

    [2]

    Bafekry A, Stampfl C 2020 Phys. Rev. B 102 195411Google Scholar

    [3]

    Tsao J, Chowdhury S, Hollis M, Jena D, Johnson N, Jones K, Kaplar R, Rajan S, Walle C, Bellotti E, Chua C, Collazo R, Coltrin M, Cooper J, Evans K, Graham S, Grotjohn T, Heller E, Higashiwaki M, Islam M, Juodawlkis P, Khan M, Koehler A, Leach J, Mishra U, Nemanich R, Pilawa-Podgurski R, Shealy J, Sitar Z, Tadjer M, Witulski A, Wraback M, Simmons J 2018 Adv. Electron. Mater. 4 1600501Google Scholar

    [4]

    Ghobadi N 2013 Int. Nano Lett. 3 2Google Scholar

    [5]

    Kumar A, Kumar R, Verma N, Anupama A V, Choudhary H K, Philip R, Sahoo B 2020 Opt. Mater. 108 110163Google Scholar

    [6]

    Li X J, Huang H, Bin H J, Peng Z X, Zhu C H, Xue L W, Zhang Z G, Zhang Z J, Ade H, Li Y F 2017 Chem. Mater. 29 10130Google Scholar

    [7]

    Ali H, Alsmadi A M, Salameh M, Mathai M, Shatnawi M, Hadia N M A, Ibrahim E M M 2020 J Alloy. Compd. 816 152538Google Scholar

    [8]

    Chen Y F, Xi J Y, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z J, Huang Y S, Xie L M 2013 ACS Nano 7 4610Google Scholar

    [9]

    Karlicek R F, Schurman M J, Tran C 1996 J. Appl. Phys. 80 4615Google Scholar

    [10]

    Jeon K J, Lee Z H, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano 5 1042Google Scholar

    [11]

    Soh C B, Liu W, Chua S J, Teng J H, R J N Tan, Ang S S 2009 Phys. Status Solidi C 6 S519Google Scholar

    [12]

    Pantzas K, Gmili Y E, Dickerson J, Gautier S, Largeau L, Mauguin O, Patriarche G, Suresh S, Moudakir T, Bishop C, Ahaitouf A, Rivera T, Tanguy C, Voss P L, Ougazzaden A 2013 J. Cryst. Growth 370 57Google Scholar

    [13]

    Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K. K., Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453

    [14]

    Jaros A, Hartmann J, Zhou H, Szafranski B, Strassbur M, Avramescu A, Waag A, Voss T 2018 Sci. Rep. 8 11560

    [15]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691Google Scholar

    [16]

    Abell J, Moustakas T D 2008 Appl. Phys. Lett. 92 091901

    [17]

    De A, Shivaprasad S M 2016 J. Phys. D Appl. Phys. 49 355304Google Scholar

    [18]

    Lu C H, Li Y C, Chen Y H, Tsai S C, Lai Y L, Li Y L, Liu C P 2013 J. Alloy. Compd. 555 250Google Scholar

    [19]

    Cho C Y, Park S J 2016 Opt. Express 24 7488Google Scholar

    [20]

    Kou J Q, Huang S W, Che J M, Shao H, Chu C S, Tian K K, Zhang Y H, Bi W G, Zhang Z H, Kuo H C 2019 IEEE T. Nanotechnol. 18 176Google Scholar

    [21]

    Wang F, Ji Z W, Wang Q, Wang X S, Qu S, Xu X G, Lv Y J, Feng Z H 2013 J. Appl. Phys. 114 163525Google Scholar

    [22]

    Mohanta A, Wang S F, Young T F, Yeh P H, Ling D C, Lee M E, Jang D J 2015 J. Appl. Phys. 117 144503Google Scholar

    [23]

    Li J F, Li C F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Opt. Express 25 A871Google Scholar

    [24]

    Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Li H D, Wei Y H, Xu X G 2020 Sci. Rep. 10 129Google Scholar

    [25]

    Lv H Y, Li C F, Li J F, Xu M S, Ji Z W, Shi K J, Xu X L, Li H B, Xu X G 2017 Mater. Express 7 523Google Scholar

    [26]

    Li C F, Ji Z W, Li J F, Xu M S, Xiao H D, Xu X G 2017 Sci. Rep. 7 15301Google Scholar

    [27]

    Wang H N, Ji Z W, Qu S, Wang G, Jiang Y Z, Liu B L, Xu X G, Mino H 2012 Opt. Express 20 3932Google Scholar

    [28]

    Lee J C, Wu Y F, Wang Y P, Nee T E 2008 J. Cryst. Growth 310 5143Google Scholar

    [29]

    Li C F, Shi K J, Xu M S, Xu X G, Ji Z W 2019 Chin. Phys. B 28 107803Google Scholar

    [30]

    Sun H, Ji Z W, Wang H N, Xiao H D, Qu S, Xu X G, Jin A Z, Yang H F 2013 J. Appl. Phys. 114 093508

    [31]

    Domen K, Soejima R, Kuramata A, Tanahashi T 1998 MRS Internet J. Nitride Semicond. Res. 3 2Google Scholar

    [32]

    Vampola K J, Iza M, Keller S, DenBaars S P, Nakamura S 2009 Appl. Phys. Lett. 94 061116

    [33]

    Li R, Xu M S, Wang C X, Qu S D, Shi K J, Changfu Li C F, Xu X G, Ji Z W 2021 Superlattice Microst 160 107090Google Scholar

    [34]

    Mu Q, Xu M S, Wang X S, Wang Q, Lv Y J, Feng Z H, Xu X G, Ji Z W 2016 Physica E 76 1Google Scholar

    [35]

    Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G, Ji Z W 2021 Chin. Phys. B 30 047801Google Scholar

计量
  • 文章访问数:  9671
  • PDF下载量:  195
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-12
  • 修回日期:  2021-11-26
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-03-20

/

返回文章
返回
Baidu
map