-
使用射频磁控溅射技术制备了钼(Mo)膜,再利用硒化退火方式生成二硒化钼(MoSe2)薄膜。对MoSe2薄膜的表面形貌、晶体结构和光学带隙进行了表征和分析。结果显示,MoSe2薄膜的晶体结构与硒化温度(Ts)密切相关:随着硒化温度的升高,薄膜的平均晶粒尺寸先略减小后增大,且(002)晶面取向优先生长。MoSe2薄膜对短波长光(600nm左右)具有较低的吸收率。随着硒化温度升高,MoSe2的直接带隙波发生蓝移,光学带隙随之减小。研究表明,通过改变硒化温度可以有效调控MoSe2结构和光学带隙,为MoSe2薄膜在光学器件应用方面提供更多可能。In recent years, MoSe2, as a kind of transition metal dichalcogenides have been attracting a wide range of research interests due to its special crystal structure which exhibits different electrical and optical properties. The band gap of molybdenum diselenide can be manipulated by different layers, strain engineering, doping, or the formation of heterostructures, which makes it potentially advantageous in optoelectronic devices and photovoltaic applications. In this work, we investigate the effect of selenization temperature on the structure and optical properties of the MoSe2 films. Molybdenum (Mo) thin films were prepared by RF magnetron sputtering, and then MoSe2 thin films were generated by selenization annealing. The surface morphology, crystal structure, and optical bandgap of the MoSe2 thin films were characterized and analyzed using scanning electron microscopy, X-ray diffraction, and ultraviolet visible spectroscopy, respectively. The results show that the crystal structure of the MoSe2 thin films is closely related to the selenization temperature (Ts): with the increase of selenization temperature, the average grain size of the thin films decreases slightly and then increases rapidly (from 24.82 nm to 55.76 nm). Meanwhile, the (002) crystal plane of MoSe2 also exhibits preferential growth with increasing temperature. The MoSe2 thin films have a low absorption rate for short-wavelength light (around 600 nm). With the increase of selenization temperature, the bandgap wave of the MoSe2 thin films is blue-shifted, and the optical bandgap decreases. The reason is that different selenization temperatures cause changes in the lattice size of MoSe2, thereby affecting the spatial expansion of its electronic wave function. In addition, the structure and optical bandgap of MoSe2 can be effectively controlled by changing the selenization temperature, which provides more possibilities for the MoSe2 thin films in the application of optical devices.
-
Keywords:
- MoSe2 thin film /
- Selenization temperature /
- Magnetron sputtering /
- Thin films structure /
- Optical bandgap
-
[1] Monga D, Sharma S, Shetti N P, Basu S, Reddy K R,Mater. Today Chem. 19 100399
[2] Zhou W, Gong H M, Jin X H, Chen Y, Li H M,Liu S 2022 Front. Physics 10 842789
[3] Kaur R, Singh K,Tripathi S 2022 J.Alloy. Compd. 905 164103
[4] Cui Z, Wang H X, Shen Y, Qin K, Yuan P,Li E L 2024 Mater. Today Phys. 40 101317
[5] Li F, Xu B, Yang W, Qi Z Y, Ma C, Wang Y J, Zhang X H, Luo Z R, Liang D L,Li D 2020 Nano Res. 13 1053
[6] Yan Q J, Cheng J X, Wang W K, Sun M J, Yin Y L, Peng Y H, Zhou W C,Tang D S 2022 J. Phys.-Condes. Matter 34 475703
[7] Zhao P, Cheng R, Zhao L, Yang H J,Jiang Z Y 2023 J. Appl. Phys. 134 134302
[8] Kalkan S B, Najafidehaghani E, Gan Z, Apfelbeck F A C, Hübner U, George A, Turchanin A,Nickel B 2021 npj 2D Mater. Appl. 5 92
[9] Deng L M, Si J S, Wu X C,Zhang W B 2022 Acta Phys. Sin. 71 147101 (in Chinese) [邓霖湄, 司君山, 吴绪才, 张卫兵 2022 71 147101]
[10] Guo Qiang H, Rui Z, Wen Jing Z, Na C, Xiao Jun Y,Hong Bo L 2022 Acta Phys. Sin. 71 017104 (in Chinese) [郝国强,张瑞,张文静,陈娜,叶晓军,李红波 2022 71 017104]
[11] Zhang Q Y, Mei L, Cao X H, Tang Y X,Zeng Z Y 2020 J. Mater. Chem. A 8 15417
[12] Li Y G, Kuang G Z, Jiao Z J, Yao L,Duan R H 2022 Mater. Res. Express 9 122001
[13] Wei Y, Hu C, Li Y, Hu X, Yu K, Sun L, Hohage M,Sun L 2020 Nanotechnology 31 315710
[14] Chen L, Wang J F, Li X J, Zhao C R, Hu X, Wu Y,He Y M 2022 Inorg. Chem. Front. 9 2714
[15] Vanathi V, Sathishkumar M, Kannan S,Balamurugan A 2024 Mater. Lett. 356 135595
[16] Li J C, Yan W J, Lv Y H, Leng J, Zhang D, Coileáin C Ó, Cullen C P, Stimpel-Lindner T, Duesberg G S,Cho J 2020 RSC Adv. 10 1580
[17] ZHAN W Y, ZOU J P, Xu M, Lei T,WEI H M 2023 Trans. Nonferrous Met. Soc. China 33 2483
[18] Zhu X B, Jiang X, Yao X Y, Leng Y X, Xu X X, Peng A P, Wang L P,Xue Q J 2019 ACS Appl. Mater. Interfaces 11 45726
[19] Yaqub T B, Vuchkov T, Sanguino P, Polcar T,Cavaleiro A 2020 Coatings 10 133
[20] Yaqub T B, Kannur K H, Vuchkov T, Pupier C, Héau C,Cavaleiro A 2020 Mater. Lett. 275 128035
[21] Li N, Liu Z T, Feng L P,Jia R T 2016 Surf. Eng. 32 299
[22] Mao X, Li Z Q, Zou J P, Zhao G Y, Li D N,Song Z Q 2019 Appl. Surf. Sci. 487 719
[23] Wu Q, Fu X, Yang K, Wu H, Liu L, Zhang L, Tian Y, Yin L-J, Huang W-Q,Zhang W 2021 ACS Nano 15 4481
[24] Franklin A D 2015 Science 349 704
[25] Chang Y S, Chen C Y, Ho C J, Cheng C M, Chen H R, Fu T Y, Huang Y T, Ke S W, Du H Y,Lee K Y 2021 Nano Energy 84 105922
[26] Thureja D, Imamoglu A, Smoleński T, Amelio I, Popert A, Chervy T, Lu X, Liu S, Barmak K,Watanabe K 2022 Nature 606 298
[27] Chouki T, Donkova B, Aktarla B, Stefanov P,Emin S 2021 Mater. Today Commun. 26 101976
[28] Upadhyay S,Pandey O 2021 J. Alloy. Compd. 857 157522
[29] Jäger-Waldau A, Lux-Steiner M, Jäger-Waldau R, Burkhardt R,Bucher E 1990 Thin Solid Films 189 339
[30] Li J,Zhu J 2007 Acta Phys. Sin. 56 574 (in Chinese) [李 健,朱 洁 2007 56 574]
[31] Mao Q N, Zhang X Y, Li X G, He J X, Yu P R,Wang D 2014 Acta Phys. Sin. 63 118802 (in Chinese) [毛启楠, 张晓勇, 李学耕, 贺劲鑫, 于平荣, 王东 2014 63 118802]
[32] Sharma C, Srivastava A K,Gupta M K 2023 Physica B 669 415290
[33] Zeng F, Kong W, Liang Y, Li F, Lvtao Y, Su Z, Wang T, Peng B, Ye L,Chen Z 2023 Adv. Mater. 35 2306051
[34] Mittal H, Raza M,Khanuja M 2023 MethodsX 11 102409
[35] Kandar S, Bhatt K, Kumar N, Kapoor A K,Singh R 2024 ACS Appl. Nano Mater. 7 8212
[36] Tao S M, Ma J F, Liu J J, Wang Y R,Xiao J R 2024 Int. J. Hydrog. Energy 58 829
[37] Ohtake A,Sakuma Y 2021 J. Phys. Chem. C 125 11257
[38] Shi N X, Liu G Z, Xi B J, An X G, Sun C H,Xiong S L 2024 Nano Res. 17 4023
[39] Wang X, Gong Y, Shi G, Chow W L, Keyshar K, Ye G, Vajtai R, Lou J, Liu Z,Ringe E 2014 ACS Nano 8 5125
[40] Zhao S, Lu M, Xue S, Yan L, Miao P, Hang Y, Wang X, Liu Z, Wang Y,Tao L 2019 arXiv preprint arXiv:1904.09789
[41] Ahmad Y H, Kamand F Z, Zekri A, Chae K-J, Aïssa B,Al-Qaradawi S Y 2023 Appl. Surf. Sci. 626 157205
[42] Liu H L, Yang T, Chen J H, Chen H W, Guo H H, Saito R, Li M Y,Li L J 2020 Sci Rep 10 15282
[43] Wang Z, Chen Y F, Wu P S, Ye J F, Peng M, Yan Y, Zhong F, He T, Wang Y,Xu M J 2020 Infrared Phys. Technol. 106 103272
[44] Huang J W, Luo L Q, Jin B, Chu S J,Peng R F 2017 Acta Phys. Sin. 66 137801 (in Chinese) [黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳 2017 66 137801]
[45] Zhang X L, Zhou J, Li S Q, Wang Y Y, Zhang S P, Liu Y L, Gao J F, Zhao J J, Wang W P,Yu R C 2021 J. Phys. Chem. Lett. 12 5879
计量
- 文章访问数: 197
- PDF下载量: 11
- 被引次数: 0