-
The thermal transport properties of porous graphene nanoribbons are studied by the non-equilibrium Green's function method. The results show that owing to the existence of nano-pores, the thermal conductance of porous graphene nanoribbons is much lower than that of graphene nanoribbons. At room temperature, the thermal conductance of zigzag porous graphene nanoribbons is only 12% of that of zigzag graphene nanoribbons of the same size. This is due to the phonon localization caused by the nano-pores in the porous graphene nanoribbons. In addition, the thermal conductance of porous graphene nanoribbons has remarkable anisotropy. With the same size, the thermal conductance of armchair porous graphene nanoribbons is about twice higher than that of zigzag porous graphene nanoribbons. This is because the phonon locality in the zigzag direction is stronger than that in the armchair direction, and even part of the frequency phonons are completely localized.
-
Keywords:
- porous graphene /
- phonon localization /
- thermal conductance /
- non-equilibrium Green’s function
[1] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[2] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar
[3] Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236Google Scholar
[4] Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[6] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar
[7] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770Google Scholar
[8] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103Google Scholar
[9] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar
[10] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042Google Scholar
[11] Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149Google Scholar
[12] Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422
[13] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824Google Scholar
[14] Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97Google Scholar
[15] Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435
[16] Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514Google Scholar
[17] Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702Google Scholar
[18] Baskin A, Kral P 2011 Sci. Rep. 1 36Google Scholar
[19] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar
[20] Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913
[21] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385
[22] Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377Google Scholar
[23] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[24] Feng T, Ruan X 2016 Carbon 101 107Google Scholar
[25] Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444Google Scholar
[26] 陈晓彬, 段文晖 2015 64 186302Google Scholar
Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar
[27] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 67 026501Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501Google Scholar
[28] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 66 116501Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501Google Scholar
[29] 姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102Google Scholar
Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102Google Scholar
[30] Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar
[31] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar
[32] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar
[33] Mingo N, Yang L 2003 Phys. Rev. B 68 245406Google Scholar
[34] Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228
[35] Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160Google Scholar
[36] Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629Google Scholar
[37] Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112Google Scholar
[38] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441Google Scholar
[39] Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412Google Scholar
[40] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783Google Scholar
[41] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar
[42] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar
-
图 2 AGNR-2和NPAGNR-2的热导和温度的关系(a), 以及对应的声子透射谱图(b); ZGNR-2和NPZGNR-2的热导和温度的关系(c), 以及对应的声子透射谱图(d)
Fig. 2. (a) Thermal conductance of AGNR-2 and NPAGNR-2 with different temperatures; (b) phonon transmission spectrumof AGNR-2 and NPAGNR-2; (c) thermal conductance of ZGNR-2 and NPZGNR-2 with different temperatures; (d) phonon transmission spectrum of ZGNR-2 and NPZGNR-2.
-
[1] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar
[2] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar
[3] Gao H, Wang L, Zhao J, Ding F, Lu J 2011 J. Phys. Chem. C 115 3236Google Scholar
[4] Sławińska J, Zasada I, Klusek Z 2010 Phys. Rev. B 81 155433Google Scholar
[5] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar
[6] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar
[7] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nat. Mater. 6 770Google Scholar
[8] Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, van den Brink J 2007 Phys. Rev. B 76 073103Google Scholar
[9] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar
[10] Jeon K J, Lee Z, Pollak E, Moreschini L, Bostwick A, Park C M, Mendelsberg R, Radmilovic V, Kostecki R, Richardson T J, Rotenberg E 2011 ACS Nano. 5 1042Google Scholar
[11] Kaur S, Narang S B, Randhawa D K K 2017 J. Mater. Res. 32 1149Google Scholar
[12] Du L, Nguyen T N, Gilman A, Muniz A R, Maroudas D 2017 Phys. Rev. B 96 245422
[13] Zhao Y, Yang L, Kong L, Nai M H, Liu D, Wu J, Liu Y, Chiam S Y, Chim W K, Lim C T, Li B, Thong J T L, Hippalgaonkar K 2017 Adv. Func. Mater. 27 1702824Google Scholar
[14] Sadeghzadeh S, Rezapour N 2016 Superlattice. Microst. 100 97Google Scholar
[15] Nemnes G A, Visan C, Manolescu A 2017 J. Mater. Chem. C 5 4435
[16] Sadeghi H, Sangtarash S, Lambert C J 2015 Sci. Rep. 5 9514Google Scholar
[17] Hu S, An M, Yang N, Li B 2016 Nanotechnology 27 265702Google Scholar
[18] Baskin A, Kral P 2011 Sci. Rep. 1 36Google Scholar
[19] Hu S, Zhang Z, Jiang P, Ren W, Yu C, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar
[20] Xiao Y, Chen Q Y, Ma D K, Yang N, Hao Q 2019 arXiv preprint arXiv: 1910.04913
[21] Moreno C, Vilas-Varela M, Kretz B, Garcia-Lekue A, Costache M V, Paradinas M, Panighel M, Ceballos G, Valenzuela S O, Peña D, Mugarza A 2018 Science 360 6385
[22] Mortazavi B, Madjet M E, Shahrokhi M, Ahzi S, Zhuang X, Rabczuk T 2019 Carbon 147 377Google Scholar
[23] Hu S, Zhang Z, Jiang P, Chen J, Volz S, Nomura M, Li B 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[24] Feng T, Ruan X 2016 Carbon 101 107Google Scholar
[25] Singh D, Shukla V, Ahuja R 2020 Phys. Rev. B 102 075444Google Scholar
[26] 陈晓彬, 段文晖 2015 64 186302Google Scholar
Chen X B, Duan W H 2015 Acta Phys. Sin. 64 186302Google Scholar
[27] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江 2018 67 026501Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J 2018 Acta Phys. Sin. 67 026501Google Scholar
[28] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超 2017 66 116501Google Scholar
Wu Y, Cai S H, Deng M S, Sun G Y, Liu W J, Cen C 2017 Acta Phys. Sin. 66 116501Google Scholar
[29] 姚海峰, 谢月娥, 欧阳滔, 陈元平 2013 62 068102Google Scholar
Yao H F, XieY E, Ouyang T, Chen Y P 2013 Acta Phys. Sin. 62 068102Google Scholar
[30] Zhou W X, Chen K Q 2015 Carbon 85 24Google Scholar
[31] Qian X, Zhou J, Chen G 2021 Nat. Mater. 20 1188Google Scholar
[32] Yamamoto T, Watanabe K 2006 Phys. Rev. Lett. 96 255503Google Scholar
[33] Mingo N, Yang L 2003 Phys. Rev. B 68 245406Google Scholar
[34] Sevinçli H, Sevik C, Çaın T, Cuniberti G 2013 Nature. Sci. Rep. 3 1228
[35] Peng Y N, Yu J F, Cao X H, Wu D, Jia P Z, Zhou W X, Chen K Q 2020 Physica E:Low-Dimens. Syst. Nanostruct. 122 114160Google Scholar
[36] Gale J. D. 1997 J. Chem. Soc. , Faraday Trans. 93 629Google Scholar
[37] Lu Y, Guo J 2012 Appl. Phys. Lett. 101 043112Google Scholar
[38] Lindsay L, Broido D A 2010 Phys. Rev. B 81 205441Google Scholar
[39] Khare R, Mielke S L, Paci J T, Zhang S, Ballarini R, Schatz G C, Belytschko T 2007 Phys. Rev. B 75 075412Google Scholar
[40] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B, Sinnott S B 2002 J. Phys.: Condens. Matter 14 783Google Scholar
[41] Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar
[42] Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934Google Scholar
计量
- 文章访问数: 5050
- PDF下载量: 106
- 被引次数: 0