搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

介孔尺度及结构对混合硝酸盐热输运特性的影响

何卓亚 杨启容 李昭莹 毛蕊 王力伟 闫晨宣

引用本文:
Citation:

介孔尺度及结构对混合硝酸盐热输运特性的影响

何卓亚, 杨启容, 李昭莹, 毛蕊, 王力伟, 闫晨宣

Influence of mesoporous size and structure on heat transport characteristics of mixed nitrate

He Zhuo-Ya, Yang Qi-Rong, Li Zhao-Ying, Mao Rui, Wang Li-Wei, Yan Chen-Xuan
PDF
HTML
导出引用
  • 采用分子动力学方法模拟介孔尺度和结构对混合硝酸盐热输运特性的影响. 使用Material Studio软件分别建立不同尺度、两种结构的混合硝酸盐模型以及达到共晶状态的不同比例的NaNO3-KNO3模型, 通过对模型进行运算并整理计算结果, 对纳米尺度下混合硝酸盐热输运特性的微观机理进行分析. 结果表明: 太阳盐的相变温度随着纳米孔尺度的增大呈现先增加后减小的趋势, 最终与宏观尺度下的熔点一致; 阳离子的比例对混合硝酸盐的相变温度有很大的影响, 且纳米线结构也会改变硝酸盐的相变温度. 硝酸盐的体热膨胀系数随着介孔尺度的增大而减小, 随着NaNO3含量的增加而增大, 随着介孔结构的改变而改变. 离子之间的相互作用的增强会使导热率增大, 但对定压比热容没有太大影响.
    Molecular dynamics method is used to simulate the influence of the mesopore size and structure on the heat transport characteristics of the mixed nitrate. The Material Studio software is used to establish the mixed nitrate models of different scales and two structures, and the NaNO3-KNO3 models of different proportions that reach the eutectic state. By calculating the models and sorting out the calculation results, the phase transition of mixed nitrates on a nanometer scale is calculated and the micro-mechanism of heat transport characteristics is analyzed. The results show that the phase transition temperature of the solar salt first increases and then decreases with the increase of the nanopore size, and finally is consistent with the melting point on a macro scale. The proportion of cations has a great influence on the phase transition temperature of mixed nitrate, and the nanowire structures also change the phase transition temperature of nitrate. The bulk thermal expansion coefficient of nitrate decreases with the increase of mesoporous size, increases with the increase of NaNO3 content, and changes with the mesoporous structure. The enhancement of the interaction between ions will increase the thermal conductivity, but it will not have much effect on the specific heat capacity at a constant pressure.
      通信作者: 杨启容, luyingyi125@163.com
    • 基金项目: 国家自然科学基金(批准号: 51701102)资助的课题
      Corresponding author: Yang Qi-Rong, luyingyi125@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51701102)
    [1]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092Google Scholar

    [2]

    Awad A, Navarro H, Ding Y L 2018 Renew. Energy 120 275Google Scholar

    [3]

    Chieruzzia M, Gian F. C, Miliozzi A 2017 Sol. Energy Mater. Sol. Cells 167 60Google Scholar

    [4]

    Zhang Y, Li J L, Gao L 2020 Sol. Energy Mater. Sol. Cells 216 110727Google Scholar

    [5]

    Han C J, Gu H Z, Zhang M J 2020 Sol. Energy Mater. Sol. Cells 217 110697Google Scholar

    [6]

    Deng Y, Qian T T, Guan W M 2017 J. Mater. Sci. Technol. 33 198Google Scholar

    [7]

    Rena Y, Lia P 2019 Sol. Energy Mater. Sol. Cells 200 110005Google Scholar

    [8]

    尹辉斌, 王文豪, 陈昌杰 2017 广东化工 22 33Google Scholar

    Yin H B, Wang W H, Chen C J 2017 Guangdong Chemical 22 33Google Scholar

    [9]

    李进, 王峰, 张世广, 吴玉庭 2020 华电技术 42 17Google Scholar

    Li J, Wang F, Chang S G, Wu Y T 2020 Huadian Technologies 42 17Google Scholar

    [10]

    李彦, 李鹏, 朱群志, 余杨敏 2018 硅酸盐学报 46 625Google Scholar

    Li Y, Li P, Zhu Q Z, Yu Y Y 2018 Journal of Silicate 46 625Google Scholar

    [11]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第5−138页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Thermal Transport Properties of Mesoporous Composite (Beijing: Science Press) pp5−138 (in Chinese)

    [12]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S Y, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [13]

    Bore M T, Pham H N, Switzer E E 2005 J. Phys. Chem. B 109 2873Google Scholar

    [14]

    Zhang J R, Feng Y H, Yuan H B 2015 Comput. Mater. Sci. 109 300Google Scholar

    [15]

    Wang L P, Sui J, Zhai M 2015 J. Phys. Chem. C 119 18697Google Scholar

    [16]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212−220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212−220 (in Chinese)

    [17]

    李亚琼, 梁凯彦, 王静静, 黄秀兵 2020 工程科学学报 42 1229Google Scholar

    Li Y Q, Liang K Y, Wang J J, Huang X B 2020 J. Eng. Sci. 42 1229Google Scholar

    [18]

    Min X, Fang M H, Huang Z H 2015 Sci. Rep. 5 12964Google Scholar

    [19]

    Gao J K, Tao W W, Chen D 2018 Nanomaterials 8 385Google Scholar

    [20]

    Sirota E B 2007 Macromolecules 40 1043Google Scholar

    [21]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [22]

    Asegun H, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [23]

    黄丛亮, 冯黛丽, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501Google Scholar

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501Google Scholar

    [24]

    Ni H O, Wu J, Sun Z 2019 Chem. Eng. J. 377 120029Google Scholar

    [25]

    Elena N, Anabel P, Tomos H 2017 Energy Stor. Sci. Tech. 6 688

    [26]

    吴玉庭, 王涛, 马重芳 2012 太阳能学报 33 148Google Scholar

    Wu Y T, Wang T, Ma C F 2012 J. Sol. Energy 33 148Google Scholar

    [27]

    官云许, 杨启容, 何卓亚, 王力伟 2021 功能材料 52 2153Google Scholar

    Guan Y X, Yang Q R, He Z Y, Wang L W 2021 Funct. Mater. 52 2153Google Scholar

    [28]

    李成祥, 孟庆元, 杨立军 2008 哈尔滨工业大学学报 40 705Google Scholar

    Li C X, Meng Q Y, Yang L J 2008 Journal of Harbin Institute of Technology 40 705Google Scholar

    [29]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Transf. 103 417Google Scholar

    [30]

    宫薛菲, 杨启容, 姚尔人, 刘亭 2020 功能材料 51 1214Google Scholar

    Gong X F, Yang Q R, Yao E R, L T 2020 Funct. Mater. 51 1214Google Scholar

    [31]

    Jayaraman S, Thompson A P, von Lilienfeld O Anatole 2010 Ind. Eng. Chem. Res. 49 559Google Scholar

    [32]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energy Mater. Sol. Cells 200 109897Google Scholar

    [33]

    倪海鸥, 孙泽, 路贵民 2017 储能科学与技术 6 669Google Scholar

    Ni H O, Sun Z, Lu G M 2017 Energy Stor. Mater. 6 669Google Scholar

    [34]

    车德勇, 沈辉, 蒋文强 2015 无机盐工业 47 30

    Che D Y, Shen H, Jiang W Q 2015 Inorganic salt industry 47 30

    [35]

    Couchman P R, Jesser W A 1977 Nature 269 481Google Scholar

    [36]

    David T B, Lereah Y, Deutscher G 1995 Philos. Mag. A 71 1135Google Scholar

    [37]

    Reiss H, Wilson I B 1948 J. Colloid Sci. 3 551Google Scholar

    [38]

    王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568Google Scholar

    Wang H L, Wang X X, Liang H Y 2005 J. Metal Sci. 41 568Google Scholar

    [39]

    姜小宝 2013 博士学位论文 (长春: 吉林大学)

    Jiang X B 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [40]

    Sememchenko V K 1961 Surface Phenomena in Metals and Alloys (Oxford Pergamon) pp2−81

    [41]

    温元凯, 李振民 1978 科学通报 23 225Google Scholar

    Wen Y K 1978 Chin. Sci. Bull. 23 225Google Scholar

    [42]

    Lonappan M 1955 Proceedings of the Indian Academy of Sciences-Section A 41 239Google Scholar

    [43]

    张景胤 2017 硕士学位论文 (北京: 华北电力大学)

    Zhang J Y 2017 M. S. Thesis (Beijing: North China Electric Power University) (in Chinese)

    [44]

    Kenisarin M 2010 Renew. Sust. Energ. Rev. 14 955Google Scholar

    [45]

    李杨 2018 硕士学位论文 (郑州: 郑州大学)

    Li Y 2018 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [46]

    王长宝 2013 硕士学位论文 (北京: 北京工业大学)

    Wang C B 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

  • 图 1  NaNO3和KNO3的单晶胞

    Fig. 1.  NaNO3 and KNO3 single crystal cells.

    图 2  混合硝酸盐模型 (a) w (NaNO3)∶w (KNO3) = 4∶6混合硝酸盐; (b) w (NaNO3) ∶w (KNO3) = 5∶5混合硝酸盐; (c) w (NaNO3) ∶w (KNO3) = 9∶1混合硝酸盐; (d) w (NaNO3)∶w (KNO3) = 6∶4太阳盐; (e) w(NaNO3)∶w (KNO3) = 6∶4异结构太阳盐

    Fig. 2.  Mixed nitrate model: (a) w (NaNO3)∶w (KNO3) = 4∶6 mixed nitrate; (b) w (NaNO3)∶w (KNO3) = 5∶5 mixed nitrate; (c) w (NaNO3)∶w (KNO3) = 9∶1 mixed nitrate; (d) w (NaNO3)∶w (KNO3) = 6∶4 solar salt; (e) w (NaNO3)∶w (KNO3) = 6∶4 heterogeneous solar salts.

    图 3  不同温度下离子之间的径向分布函数 (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N)

    Fig. 3.  Radial distribution function of ions at different temperatures: (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N).

    图 4  不同尺度下离子之间的径向分布函数和相互作用能 (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d)相互作用能

    Fig. 4.  Radial distribution function and interaction energy of ions at different scales: (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d) interaction energy.

    图 5  不同比例下离子之间的径向分布函数和相互作用能(w(NaNO3):w(KNO3)) (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N); (d)相互作用能

    Fig. 5.  Radial distribution function and interaction energy of ions at different proportions (w(NaNO3):w(KNO3)): (a) w(K+)-w(Na+); (b) w(K+)-w(N); (c) w(Na+)-w(N); (d) interaction energy.

    图 6  两种结构下离子之间的径向分布函数和相互作用能 (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d)相互作用能

    Fig. 6.  Radial distribution function and interaction energy of ions at two structures: (a) n(K+)-n(Na+); (b) n(K+)-n(N); (c) n(Na+)-n(N); (d) interaction energy.

    图 7  离子数为2760的太阳盐的均方位移和自扩散系数 (a)均方位移; (b)自扩散系数

    Fig. 7.  Mean square displacement and self diffusion coefficient of solar salt with ion number of 2760: (a) Mean square displacement; (b) self diffusion coefficient.

    图 8  不同尺度下太阳盐的体热膨胀系数和体积 (a)体热膨胀系数; (b)体积

    Fig. 8.  Thermal expansion coefficient and volume of solar salts at different scales: (a) Thermal expansion coefficient; (b) volume.

    图 9  不同比例下太阳盐的体热膨胀系数和体积(w(Na+)∶w(K+)) (a)体热膨胀系数; (b)体积

    Fig. 9.  Thermal expansion coefficient and volume of solar salts at different proportions (w(Na+)∶w(K+)): (a) Thermal expansion coefficient; (b) volume.

    图 10  两种结构下太阳盐的体热膨胀系数和体积 (a)体热膨胀系数; (b)体积

    Fig. 10.  Thermal expansion coefficient and volume of solar salts at two structures: (a) Thermal expansion coefficient; (b) volume.

    图 11  不同尺度下太阳盐导热率

    Fig. 11.  Thermal conductivity of solar salts at different scales.

    图 12  不同比例下混合硝酸盐导热率

    Fig. 12.  Thermal conductivity of mixed nitrates at different ratios.

    图 13  不同尺度下太阳盐定压比热容

    Fig. 13.  Fixed-pressure specific heat capacity of solar salts at different scales.

    图 14  不同比例(w(Na+)∶w(K+))下混合硝酸盐定压比热容

    Fig. 14.  Fixed-pressure specific heat capacity of mixed nitrate at different ratios (w(Na+)∶w(K+)).

    表 1  太阳盐($w({\rm NaNO_3}): w({\rm KNO_3}) = 6:4$)中NaNO3和KNO3的离子数

    Table 1.  Ion numbers of NaNO3 and KNO3 in solar salts ($w({\rm NaNO_3}): w({\rm KNO_3}) = 6: 4$)

    离子数种类Model size/nm
    Na+K+NO2–
    4606032922765
    920120641845525
    1380180962768288
    184024012836811048
    2300300160460138010
    2760360192552165610
    下载: 导出CSV

    表 2  混合硝酸盐中NaNO3和KNO3的离子数(总离子数为460)

    Table 2.  Ion numbers of NaNO3 and KNO3 in mixed nitrate (total number of ions is 460).

    $w({\rm NaNO_3}): w({\rm KNO_3})$种类Model
    size/nm
    Na+K+NO2–
    4∶64151922765
    5∶54943922765
    6∶46032922765
    9∶1848922765
    下载: 导出CSV

    表 3  不同尺度下太阳盐的相变温度

    Table 3.  Phase transition temperature of solar salts at different scales.

    离子数
    46092013801840230027605520
    温度/K493493503518508492493
    下载: 导出CSV

    表 4  不同比例的混合硝酸盐的相变温度

    Table 4.  Phase transition temperature of mixed nitrates at different proportions

    w(NaNO3)∶w(KNO3)
    4∶65∶56∶49∶1
    温度/K493488493548
    下载: 导出CSV

    表 5  纳米线结构太阳盐的相变温度

    Table 5.  Phase transition temperature of nanostructured solar salts.

    离子数
    460920
    温度/K528548
    下载: 导出CSV

    表 6  两种结构下太阳盐导热率

    Table 6.  Thermal conductivity of solar salts at two structures.

    离子数
    460-
    纳米孔
    920-
    纳米孔
    460-
    纳米线
    920-
    纳米线
    导热率/(W·m–1·K–1)0.460.630.991.98
    下载: 导出CSV
    Baidu
  • [1]

    Kannan N, Vakeesan D 2016 Renew. Sust. Energy Rev. 62 1092Google Scholar

    [2]

    Awad A, Navarro H, Ding Y L 2018 Renew. Energy 120 275Google Scholar

    [3]

    Chieruzzia M, Gian F. C, Miliozzi A 2017 Sol. Energy Mater. Sol. Cells 167 60Google Scholar

    [4]

    Zhang Y, Li J L, Gao L 2020 Sol. Energy Mater. Sol. Cells 216 110727Google Scholar

    [5]

    Han C J, Gu H Z, Zhang M J 2020 Sol. Energy Mater. Sol. Cells 217 110697Google Scholar

    [6]

    Deng Y, Qian T T, Guan W M 2017 J. Mater. Sci. Technol. 33 198Google Scholar

    [7]

    Rena Y, Lia P 2019 Sol. Energy Mater. Sol. Cells 200 110005Google Scholar

    [8]

    尹辉斌, 王文豪, 陈昌杰 2017 广东化工 22 33Google Scholar

    Yin H B, Wang W H, Chen C J 2017 Guangdong Chemical 22 33Google Scholar

    [9]

    李进, 王峰, 张世广, 吴玉庭 2020 华电技术 42 17Google Scholar

    Li J, Wang F, Chang S G, Wu Y T 2020 Huadian Technologies 42 17Google Scholar

    [10]

    李彦, 李鹏, 朱群志, 余杨敏 2018 硅酸盐学报 46 625Google Scholar

    Li Y, Li P, Zhu Q Z, Yu Y Y 2018 Journal of Silicate 46 625Google Scholar

    [11]

    冯妍卉, 冯黛丽, 张欣欣 2019 介孔复合材料的相变及热输运特性 (北京: 科学出版社) 第5−138页

    Feng Y H, Feng D L, Zhang X X 2019 Phase Transition and Thermal Transport Properties of Mesoporous Composite (Beijing: Science Press) pp5−138 (in Chinese)

    [12]

    袁思伟, 冯妍卉, 王鑫, 张欣欣 2014 63 014402Google Scholar

    Yuan S Y, Feng Y H, Wang X, Zhang X X 2014 Acta Phys. Sin. 63 014402Google Scholar

    [13]

    Bore M T, Pham H N, Switzer E E 2005 J. Phys. Chem. B 109 2873Google Scholar

    [14]

    Zhang J R, Feng Y H, Yuan H B 2015 Comput. Mater. Sci. 109 300Google Scholar

    [15]

    Wang L P, Sui J, Zhai M 2015 J. Phys. Chem. C 119 18697Google Scholar

    [16]

    赵亚溥 2012 表面与界面物理力学 (北京: 科学出版社) 第212−220页

    Zhao Y P 2012 Physical Mechanics of Surfaces and Interfaces (Beijing: Science Press) pp212−220 (in Chinese)

    [17]

    李亚琼, 梁凯彦, 王静静, 黄秀兵 2020 工程科学学报 42 1229Google Scholar

    Li Y Q, Liang K Y, Wang J J, Huang X B 2020 J. Eng. Sci. 42 1229Google Scholar

    [18]

    Min X, Fang M H, Huang Z H 2015 Sci. Rep. 5 12964Google Scholar

    [19]

    Gao J K, Tao W W, Chen D 2018 Nanomaterials 8 385Google Scholar

    [20]

    Sirota E B 2007 Macromolecules 40 1043Google Scholar

    [21]

    冯黛丽, 冯妍卉, 张欣欣 2013 62 083602Google Scholar

    Feng D L, Feng Y H, Zhang X X 2013 Acta Phys. Sin. 62 083602Google Scholar

    [22]

    Asegun H, Chen G 2008 Phys. Rev. Lett. 101 235502Google Scholar

    [23]

    黄丛亮, 冯黛丽, 张欣欣, 李静, 王戈, 侴爱辉 2013 62 026501Google Scholar

    Huang C L, Feng Y H, Zhang X X, Li J, Wang G, Chou A H 2013 Acta Phys. Sin. 62 026501Google Scholar

    [24]

    Ni H O, Wu J, Sun Z 2019 Chem. Eng. J. 377 120029Google Scholar

    [25]

    Elena N, Anabel P, Tomos H 2017 Energy Stor. Sci. Tech. 6 688

    [26]

    吴玉庭, 王涛, 马重芳 2012 太阳能学报 33 148Google Scholar

    Wu Y T, Wang T, Ma C F 2012 J. Sol. Energy 33 148Google Scholar

    [27]

    官云许, 杨启容, 何卓亚, 王力伟 2021 功能材料 52 2153Google Scholar

    Guan Y X, Yang Q R, He Z Y, Wang L W 2021 Funct. Mater. 52 2153Google Scholar

    [28]

    李成祥, 孟庆元, 杨立军 2008 哈尔滨工业大学学报 40 705Google Scholar

    Li C X, Meng Q Y, Yang L J 2008 Journal of Harbin Institute of Technology 40 705Google Scholar

    [29]

    Pan G, Ding J, Wang W L 2016 Int. J. Heat Mass Transf. 103 417Google Scholar

    [30]

    宫薛菲, 杨启容, 姚尔人, 刘亭 2020 功能材料 51 1214Google Scholar

    Gong X F, Yang Q R, Yao E R, L T 2020 Funct. Mater. 51 1214Google Scholar

    [31]

    Jayaraman S, Thompson A P, von Lilienfeld O Anatole 2010 Ind. Eng. Chem. Res. 49 559Google Scholar

    [32]

    Anagnostopoulos A, Alexiadis A, Ding Y 2019 Sol. Energy Mater. Sol. Cells 200 109897Google Scholar

    [33]

    倪海鸥, 孙泽, 路贵民 2017 储能科学与技术 6 669Google Scholar

    Ni H O, Sun Z, Lu G M 2017 Energy Stor. Mater. 6 669Google Scholar

    [34]

    车德勇, 沈辉, 蒋文强 2015 无机盐工业 47 30

    Che D Y, Shen H, Jiang W Q 2015 Inorganic salt industry 47 30

    [35]

    Couchman P R, Jesser W A 1977 Nature 269 481Google Scholar

    [36]

    David T B, Lereah Y, Deutscher G 1995 Philos. Mag. A 71 1135Google Scholar

    [37]

    Reiss H, Wilson I B 1948 J. Colloid Sci. 3 551Google Scholar

    [38]

    王海龙, 王秀喜, 梁海弋 2005 金属学报 41 568Google Scholar

    Wang H L, Wang X X, Liang H Y 2005 J. Metal Sci. 41 568Google Scholar

    [39]

    姜小宝 2013 博士学位论文 (长春: 吉林大学)

    Jiang X B 2013 Ph. D. Dissertation (Changchun: Jilin University) (in Chinese)

    [40]

    Sememchenko V K 1961 Surface Phenomena in Metals and Alloys (Oxford Pergamon) pp2−81

    [41]

    温元凯, 李振民 1978 科学通报 23 225Google Scholar

    Wen Y K 1978 Chin. Sci. Bull. 23 225Google Scholar

    [42]

    Lonappan M 1955 Proceedings of the Indian Academy of Sciences-Section A 41 239Google Scholar

    [43]

    张景胤 2017 硕士学位论文 (北京: 华北电力大学)

    Zhang J Y 2017 M. S. Thesis (Beijing: North China Electric Power University) (in Chinese)

    [44]

    Kenisarin M 2010 Renew. Sust. Energ. Rev. 14 955Google Scholar

    [45]

    李杨 2018 硕士学位论文 (郑州: 郑州大学)

    Li Y 2018 M. S. Thesis (Zhengzhou: Zhengzhou University) (in Chinese)

    [46]

    王长宝 2013 硕士学位论文 (北京: 北京工业大学)

    Wang C B 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

  • [1] 毛蕊, 杨启容, 李昭莹, 闫晨宣, 何卓亚. 介孔内太阳盐凝固特性的尺度效应和结构效应分析.  , 2022, 71(11): 110503. doi: 10.7498/aps.71.20212388
    [2] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究.  , 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性.  , 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究.  , 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [6] 孙艳丽, 王华光, 张泽新. 椭球与圆球混合胶体体系的玻璃化转变.  , 2018, 67(10): 106401. doi: 10.7498/aps.67.20180264
    [7] 陶强, 马帅领, 崔田, 朱品文. 过渡金属硼化物的结构与性质.  , 2017, 66(3): 036103. doi: 10.7498/aps.66.036103
    [8] 孙景阳, 王东明, 吕业刚, 王苗, 汪伊曼, 沈祥, 王国祥, 戴世勋. 应用于相变存储器的Cu-Ge3Sb2Te5薄膜的结构及相变特性研究.  , 2015, 64(1): 016103. doi: 10.7498/aps.64.016103
    [9] 刘凤金, 陈水源, 黄志高. Ba掺杂及工艺对BiFeO3体系结构和磁特性的影响.  , 2014, 63(8): 085101. doi: 10.7498/aps.63.085101
    [10] 蓝雷雷, 胡新宇, 顾广瑞, 姜丽娜, 吴宝嘉. FeMn掺杂AlN薄膜的制备及其特性研究.  , 2013, 62(21): 217504. doi: 10.7498/aps.62.217504
    [11] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响.  , 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [12] 肖夏杰, 韩晓琴, 刘玉芳. XF2(X=B,N)分子基态的结构与势能函数.  , 2011, 60(6): 063102. doi: 10.7498/aps.60.063102
    [13] 王伟娜, 方庆清, 周军, 王胜男, 闫方亮, 刘艳美, 李雁, 吕庆荣. 制备工艺对Zn1-xMgxO薄膜结构及光学性能的影响.  , 2009, 58(5): 3461-3467. doi: 10.7498/aps.58.3461
    [14] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性.  , 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [15] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [16] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 一氧化碳合成金刚石薄膜的形貌和结构分析.  , 2007, 56(11): 6572-6579. doi: 10.7498/aps.56.6572
    [17] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究.  , 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [18] 彭鸿雁, 周传胜, 赵立新, 金曾孙, 张 冰, 陈宝玲, 陈玉强, 李敏君. 激光功率密度对类金刚石膜结构性能的影响.  , 2005, 54(9): 4294-4299. doi: 10.7498/aps.54.4294
    [19] 方庆清, 焦永芳, 李 锐, 汪金芝, 陈 辉. 单轴M型SrFe12-xCrxO19超细粒子结构与磁性研究.  , 2005, 54(4): 1826-1830. doi: 10.7498/aps.54.1826
    [20] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
计量
  • 文章访问数:  4306
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-09-14
  • 上网日期:  2022-01-18
  • 刊出日期:  2022-02-05

/

返回文章
返回
Baidu
map