搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光外差光谱仪模拟风场探测

李竣 薛正跃 刘笑海 王晶晶 王贵师 刘锟 高晓明 谈图

引用本文:
Citation:

激光外差光谱仪模拟风场探测

李竣, 薛正跃, 刘笑海, 王晶晶, 王贵师, 刘锟, 高晓明, 谈图

Simulation of wind field detection by laser heterodyne spectrometer

Li Jun, Xue Zheng-Yue, Liu Xiao-Hai, Wang Jing-Jing, Wang Gui-Shi, Liu Kun, Gao Xiao-Ming, Tan Tu
PDF
HTML
导出引用
  • 中高层大气风场是表征中高层大气环境的重要参量, 对中高层大气风场的探测在民用和军用领域有着重要意义. 激光外差光谱技术是近年来迅速发展的一种高光谱分辨率和灵敏度的被动式遥感探测技术, 以激光外差光谱技术为核心研制的激光外差光谱仪因具有体积小、重量轻、结构稳定等特点, 在星载测量中高层风场领域有巨大的潜力和应用前景. 激光外差光谱仪的地面风场探测性能验证是其应用到卫星上的关键环节, 本文利用实验室环境下建立的风场模拟装置实现0—25 m/s的风速变化, 并基于光谱分辨率为0.003 cm–1激光外差光谱仪分别测量了无风速变化和不同风速下的CH4吸收谱, 测量风速的分辨率为3 m/s. 使用光纤F-P干涉仪、波长计和参考池对激光器输出光频率进行实时的相对定标和绝对定标. 通过计算吸收光谱中心频率的偏移量, 反演得到风场风速, 并与风场模拟器风速对比, 相对误差为1.49 m/s. 该实验对激光外差光谱仪测风性能进行有效验证, 证明了使用激光外差光谱仪进行中高层大气风场测量的可能性.
    The middle- and upper- atmosphere wind field are important parameters that characterize the middle- and upper-atmosphere environment, respectively. The detection of the middle- and the upper-atmosphere wind field are of great significance in the civil field and military field. Laser heterodyne spectroscopy technology is a passive remote sensing detection technology with high spectral resolution and sensitivity, and has developed rapidly in recent years. The laser heterodyne spectrometer that takes laser heterodyne spectroscopy technology as its core, is developed due to its small size, light weight and stable structure. The verification of the ground-based wind field detection performance of the laser heterodyne spectrometer is a key part of its application to satellites. In this paper, a wind speed simulation device is built in a laboratory environment to achieve a wind speed change from 0 m/s to 25 m/s in a wind field. A laser heterodyne spectrometer with a spectral resolution of 0.003 cm–1 is used to measure the CH4 absorption spectrum without and with a wind field for different wind speeds, the resolution of measuring wind speed is 3 m/s. For relative and absolute calibration of the distributed feedback laser (DL) frequency, an interference fiber with a free dispersion range D* = 0.01167 cm–1, a wavemeter and a reference cell is used. The experimental results effectively verify the wind measurement performance of the laser heterodyne spectrometer and prove the possibility of using the laser heterodyne spectrometer to measure the atmospheric wind field.
      通信作者: 高晓明, xmgao@aiofm.ac.cn ; 谈图, tantu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 41730103)、国家重点研发计划(批准号: 2017YFC0209705)和国家自然科学基金青年科学基金(批准号: 41805018)资助的课题
      Corresponding author: Gao Xiao-Ming, xmgao@aiofm.ac.cn ; Tan Tu, tantu@aiofm.ac.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 41730103), the National Key R&D Program of China (Grant No. 2017YFC0209705), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 41805018)
    [1]

    张霖, 张淳民, 简小华 2010 59 899Google Scholar

    Zhang L, Zhang C M, Jian X H 2010 Acta Phys. Sin. 59 899Google Scholar

    [2]

    王后茂, 王咏梅, 付建国, 张仲谋 2016 空间科学学报 36 352Google Scholar

    Wang H M, Wang Y M, Fu J G, Zhang Z M 2016 Chin. J. Space Sci. 36 352Google Scholar

    [3]

    张淳民, 朱化春, 王鼎益, 赵葆常, 代海山, 张霖 2011 光学学报 31 900136Google Scholar

    Zhang C M, Zhu H C, Wang D Y, Zhao B C, Dai H S, Zhang L 2011 Acta Opt. Sin. 31 900136Google Scholar

    [4]

    Shepherd G G, Thuillier G, Cho Y M, Duboin M L, Evans W F J, Gault W A, Hersom C, Kendall D J W, Lathuillère C, Lowe R P, McDade I C, Rochon Y J, Shepherd M G, Solheim B H, Wang D Y, Ward W E 2012 Rev. Geophys. 50 RG2012Google Scholar

    [5]

    Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L, Desaulniers D L, Evans W F, Gattinger R L, Girod F, Harvie D, Hum R H, Kendall D W, Llewellyn E J, Lowe R P, Ohrt J, Pasternak F, Peillet O, Powell T M, Rochon Y, Ward W E, Wiens R H, Wimperi S 1993 J. Geophys. Res. 98 10725Google Scholar

    [6]

    Hays P B, Abreu V J, Dobbs M E, Gell D A, Grassl H J, Skinner W R 1993 J. Geophys. Res. 98 10713Google Scholar

    [7]

    姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 7Google Scholar

    Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photonica Sin. 47 7Google Scholar

    [8]

    Shepherd G G, Cho Y M 2017 Geophys. Res. Lett. 44 7036Google Scholar

    [9]

    汪丽, 赵葆常, 张淳民 2008 光学精密工程 16 426Google Scholar

    Wang L, Zhao B C, Zhang C M 2008 Optics and Precision Engineering 16 426Google Scholar

    [10]

    Weidmann D, Perrett B J, Macleod N A, Jenkins R M 2011 Opt. Express. 19 9074Google Scholar

    [11]

    Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar

    [12]

    Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [13]

    Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J P, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar

    [14]

    Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, S ouders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 APPL PHYS B-LASERS O 125 211Google Scholar

    [15]

    Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X M 2019 Opt. Express 27 9610Google Scholar

    [16]

    Wilson E L, McLinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar

    [17]

    孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 69 144201Google Scholar

    Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar

    [18]

    卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 68 064208Google Scholar

    Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar

    [19]

    薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 70 217801Google Scholar

    Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar

    [20]

    Goldstein J J, Mumma M J, Kostiuk T, Deming D, Espenak F, Zipoy D 1991 Icarus 94 45Google Scholar

    [21]

    Sorniga M, Livengood T, Sonnabend G, Kroetz P, Stupar D, Kostiuk T, Schieder R 2008 Planet. Space Sci. 56 1399Google Scholar

    [22]

    高红 2008 博士学位论文(北京: 中国科学院大学)

    Gao H 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    叶剑勇, 张淳民, 赵葆常, 李英才 2008 57 67Google Scholar

    Ye J Y, Zhang C M, Zhao B C, Li Y C 2008 Acta Phys. Sin. 57 67Google Scholar

    [24]

    Klimchuk A Y, Nadezhdinskii A I, Ponurovskii Y Y, Shapovalov Y P, Rodin A V 2012 Quantum Electron. 42 244Google Scholar

    [25]

    Zenevich S G, Klimchuk A Y, Semenov V M, Spiridonov M V, Rodin A V 2019 Quantum Electron. 49 604Google Scholar

    [26]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [27]

    王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)

    Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • 图 1  风速模拟原理图

    Fig. 1.  Schematic diagram of wind speed simulation.

    图 2  实验装置示意图与实物图. SC-5, 超连续谱光源; PD, 光电探测器; FC, 光纤耦合器; IC, 输入准直器; OC, 输出准直器; Bias-T, T型偏置器; OA, 前置放大器; BF-Filter, 带通滤波器; LIA, 锁相放大器; DL, 分布反馈式激光器; Chopper, 斩波器; Schottky Diode, 肖特基二极管

    Fig. 2.  Schematic diagram and physical diagram of the experimental device. SC-5, supercontinuum light source; PD, photodetector; FC, fiber coupler, IC, input collimator; OC, output collimator; Bias-T, T-type bias; OA, preamplifier; BF-Filter, band-pass filter; LIA, lock-in amplifier; DL, distributed feedback laser.

    图 3  信号功率谱

    Fig. 3.  signal power spectrum.

    图 4  输出光波长标定 (a)经过参考池后PD2探测得到的直接吸收信号(红色实线), 经过干涉光纤后的信号(蓝色实线); (b)波长计实时定标

    Fig. 4.  Laser wavelength calibration: (a) Absorption signal (red dotted line) detected by PD2 after passing through the reference cell, and the signal after passing through the interference fiber (black solid line); (b) real-time calibration of the wavemeter.

    图 5  (a) 逐点扫描数据图; (b) 无风场时吸收谱和存在风场时吸收谱

    Fig. 5.  (a) Point-by-point scanning data chart; (b) absorption spectrum without wind field and absorption spectrum with wind field; (c) normalized absorption spectrum of CH4 under different speed conditions.

    图 6  (a) 拟合吸收谱; (b) 测量结果

    Fig. 6.  (a) Fitted absorption spectrum; (b) inversion result.

    Baidu
  • [1]

    张霖, 张淳民, 简小华 2010 59 899Google Scholar

    Zhang L, Zhang C M, Jian X H 2010 Acta Phys. Sin. 59 899Google Scholar

    [2]

    王后茂, 王咏梅, 付建国, 张仲谋 2016 空间科学学报 36 352Google Scholar

    Wang H M, Wang Y M, Fu J G, Zhang Z M 2016 Chin. J. Space Sci. 36 352Google Scholar

    [3]

    张淳民, 朱化春, 王鼎益, 赵葆常, 代海山, 张霖 2011 光学学报 31 900136Google Scholar

    Zhang C M, Zhu H C, Wang D Y, Zhao B C, Dai H S, Zhang L 2011 Acta Opt. Sin. 31 900136Google Scholar

    [4]

    Shepherd G G, Thuillier G, Cho Y M, Duboin M L, Evans W F J, Gault W A, Hersom C, Kendall D J W, Lathuillère C, Lowe R P, McDade I C, Rochon Y J, Shepherd M G, Solheim B H, Wang D Y, Ward W E 2012 Rev. Geophys. 50 RG2012Google Scholar

    [5]

    Shepherd G G, Thuillier G, Gault W A, Solheim B H, Hersom C, Alunni J M, Brun J F, Brune S, Charlot P, Cogger L L, Desaulniers D L, Evans W F, Gattinger R L, Girod F, Harvie D, Hum R H, Kendall D W, Llewellyn E J, Lowe R P, Ohrt J, Pasternak F, Peillet O, Powell T M, Rochon Y, Ward W E, Wiens R H, Wimperi S 1993 J. Geophys. Res. 98 10725Google Scholar

    [6]

    Hays P B, Abreu V J, Dobbs M E, Gell D A, Grassl H J, Skinner W R 1993 J. Geophys. Res. 98 10713Google Scholar

    [7]

    姜通, 施海亮, 沈静, 代海山, 熊伟 2018 光子学报 47 7Google Scholar

    Jiang T, Shi H L, Shen J, Dai H S, Xiong W 2018 Acta Photonica Sin. 47 7Google Scholar

    [8]

    Shepherd G G, Cho Y M 2017 Geophys. Res. Lett. 44 7036Google Scholar

    [9]

    汪丽, 赵葆常, 张淳民 2008 光学精密工程 16 426Google Scholar

    Wang L, Zhao B C, Zhang C M 2008 Optics and Precision Engineering 16 426Google Scholar

    [10]

    Weidmann D, Perrett B J, Macleod N A, Jenkins R M 2011 Opt. Express. 19 9074Google Scholar

    [11]

    Tsai T R, Rose R A, Weidmann D, Wysocki G 2012 Appl. Opt. 51 8779Google Scholar

    [12]

    Clarke G B, Wilson E L, Miller J H, Melroy H R 2014 Meas. Sci. Technol. 25 055204Google Scholar

    [13]

    Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J P, Ramanathan A, Strahan S E, Oman L D, Hoffman C, Garner R M 2017 Meas. Sci. Technol. 28 035902Google Scholar

    [14]

    Wilson E L, DiGregorio A J, Villanueva G, Grunberg C E, S ouders Z, Miletti K M, Menendez A, Grunberg M H, Floyd M A M, Bleacher J E, Euskirchen E S, Edgar C, Caldwell B J, Shiro B, Binsted K 2019 APPL PHYS B-LASERS O 125 211Google Scholar

    [15]

    Wang J, Wang G, Tan T, Zhu G, Sun C, Cao Z, Chen W, Gao X M 2019 Opt. Express 27 9610Google Scholar

    [16]

    Wilson E L, McLinden M L, Miller J H, Allan G R, Ott L E, Melroy H R, Clarke G B 2014 Appl. Phys. B 114 385Google Scholar

    [17]

    孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明 2020 69 144201Google Scholar

    Sun C Y, Wang G S, Zhu G D, Tan T, Liu K, Gao X M 2020 Acta Phys. Sin. 69 144201Google Scholar

    [18]

    卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中 2019 68 064208Google Scholar

    Lu X J, Cao Z S, Tan T, Huang Y B, Gao X M, Rao R Z 2019 Acta Phys. Sin. 68 064208Google Scholar

    [19]

    薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图 2021 70 217801Google Scholar

    Xue Z Y, Li J, Liu X H, Wang J J, Gao X M, Tan T 2021 Acta Phys. Sin. 70 217801Google Scholar

    [20]

    Goldstein J J, Mumma M J, Kostiuk T, Deming D, Espenak F, Zipoy D 1991 Icarus 94 45Google Scholar

    [21]

    Sorniga M, Livengood T, Sonnabend G, Kroetz P, Stupar D, Kostiuk T, Schieder R 2008 Planet. Space Sci. 56 1399Google Scholar

    [22]

    高红 2008 博士学位论文(北京: 中国科学院大学)

    Gao H 2008 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    叶剑勇, 张淳民, 赵葆常, 李英才 2008 57 67Google Scholar

    Ye J Y, Zhang C M, Zhao B C, Li Y C 2008 Acta Phys. Sin. 57 67Google Scholar

    [24]

    Klimchuk A Y, Nadezhdinskii A I, Ponurovskii Y Y, Shapovalov Y P, Rodin A V 2012 Quantum Electron. 42 244Google Scholar

    [25]

    Zenevich S G, Klimchuk A Y, Semenov V M, Spiridonov M V, Rodin A V 2019 Quantum Electron. 49 604Google Scholar

    [26]

    Parvitte B, Zéninari V, Thiébeaux C, Delahaigue A, Courtois D 2004 Spectrochim. Acta, Part A 60 1193Google Scholar

    [27]

    王晶晶 2021 博士学位论文 (合肥: 中国科学技术大学)

    Wang J J 2021 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

  • [1] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱.  , 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [2] 李月, 李竣, 薛正跃, 王晶晶, 王贵师, 高晓明, 谈图. 本振光功率锁定方法应用于激光外差辐射计的研究.  , 2023, 72(9): 093201. doi: 10.7498/aps.72.20230261
    [3] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [4] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术.  , 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [5] 薛正跃, 李竣, 刘笑海, 王晶晶, 高晓明, 谈图. 基于激光外差探测的大气N2O吸收光谱测量与廓线反演.  , 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [6] 孙春艳, 王贵师, 朱公栋, 谈图, 刘锟, 高晓明. 基于高分辨率激光外差光谱反演大气CO2柱浓度及系统测量误差评估方法.  , 2020, 69(14): 144201. doi: 10.7498/aps.69.20200125
    [7] 卢兴吉, 曹振松, 谈图, 黄印博, 高晓明, 饶瑞中. 激光外差光谱仪的仪器线型函数研究.  , 2019, 68(6): 064208. doi: 10.7498/aps.68.20181620
    [8] 晏春回, 王挺峰, 张合勇, 吕韬, 吴世松. 近距离激光外差探测光学极限位移分辨率.  , 2017, 66(23): 234208. doi: 10.7498/aps.66.234208
    [9] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究.  , 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [10] 孙友文, 刘文清, 谢品华, 陈嘉乐, 曾议, 徐晋, 李昂, 司福祺, 李先欣. 红外差分光学吸收光谱技术测量环境大气中的水汽.  , 2012, 61(14): 140705. doi: 10.7498/aps.61.140705
    [11] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. Doppler振镜正弦调制多光束激光外差二次谐波测量角度的方法.  , 2012, 61(1): 010601. doi: 10.7498/aps.61.010601
    [12] 安颖, 杜振辉, 刘景旺, 徐可欣. 激光自外差相干测量中分布反馈半导体激光器电流调谐非线性的补偿方法.  , 2012, 61(3): 034207. doi: 10.7498/aps.61.034207
    [13] 李彦超, 王春晖, 高龙, 丛海芳, 曲杨. 多普勒振镜正弦调制多光束激光外差测量玻璃厚度的方法.  , 2012, 61(4): 044207. doi: 10.7498/aps.61.044207
    [14] 李彦超, 章亮, 杨彦玲, 高龙, 徐博, 王春晖. 多光束激光外差高精度测量玻璃厚度的方法.  , 2009, 58(8): 5473-5478. doi: 10.7498/aps.58.5473
    [15] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [16] 张 喆, 鲁 欣, 郝作强, 张适昌, 张东东, 王兆华, 马媛媛, 严 萍, 张 杰. 飞秒激光引导闪电的模拟实验研究.  , 2007, 56(9): 5293-5297. doi: 10.7498/aps.56.5293
    [17] 陈正林, 张杰, 滕浩, 张军, 董全力. 飞秒激光分离同位素的模拟实验研究.  , 2002, 51(5): 1081-1086. doi: 10.7498/aps.51.1081
    [18] 胡水明, 何圣贵, 林 海, 程继新, 王湘淮, 郑晶晶, 成国胜, 朱清时. 高分辨傅里叶变换激光腔内吸收光谱方法:原理和应用.  , 2000, 49(8): 1435-1440. doi: 10.7498/aps.49.1435
    [19] 秦光戎, 龚德纯, 胡岗, 温孝东. 随机共振的模拟实验.  , 1992, 41(3): 360-369. doi: 10.7498/aps.41.360
    [20] 董碧珍, 郑师海, 杨国桢. 调相聚焦激光加速器的调相模拟实验.  , 1982, 31(7): 895-903. doi: 10.7498/aps.31.895
计量
  • 文章访问数:  4235
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-05
  • 修回日期:  2021-12-23
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-05

/

返回文章
返回
Baidu
map