搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AuCl3掺杂对碳纳米管晶体管的电学性能调控及特性分析

宋明旭 王怀鹏 孙翊淋 蔡理 杨晓阔 谢丹

引用本文:
Citation:

AuCl3掺杂对碳纳米管晶体管的电学性能调控及特性分析

宋明旭, 王怀鹏, 孙翊淋, 蔡理, 杨晓阔, 谢丹

Modulation of electrical properties in carbon nanotube field-effect transistors through AuCl3 doping

Song Ming-Xu, Wang Huai-Peng, Sun Yi-Lin, Cai Li, Yang Xiao-Kuo, Xie Dan
PDF
HTML
导出引用
  • 碳纳米管晶体管作为新一代纳米器件, 由于缺乏成熟的阈值电压调控机制, 仍难以运用到实际逻辑电路中. 本文提出了一种简单易实现且能够大规模处理的表面掺杂方法, 通过AuCl3的p型掺杂作用来实现对晶体管阈值电压的有效调控, 研究了不同掺杂浓度对碳纳米管电学性能的影响. 实验结果表明, 在低掺杂浓度条件下, 不仅实现了晶体管阈值电压稳定调控, 器件导电性能也大幅提高, 迁移率提升2—3倍. 更进一步地, 研究了退火对掺杂后器件的电学性能影响, 发现在同等掺杂条件下, 退火温度达到50 ℃时, p型掺杂效果最佳. 最后采用第一性原理计算方法, 验证了金离子对碳纳米管的掺杂调控机制. 这项研究为未来实现大面积低功耗逻辑电路以及高性能电子器件提供了重要指导.
    Carbon nanotube-based field-effect transistors (CNFETs), as a new generation of nanodevices, are still difficult to apply to actual logic circuits due to the lack of a mature threshold voltage control mechanism. Here in this work, a feasible and large-scale processing surface doping method is demonstrated to effectively modulate the threshold voltage of CNFETs through the p-type doping effect of gold chloride (AuCl3). A comprehensive mapping from electrical parameters (Ion/Ioff, Vth and mobility) to doping concentration is carefully investigated, demonstrating a p-doping effect induced by surface charge transfer between Au3+ and carbon nanotube networks (CNTs). Threshold voltage of CNFETs can be effectively adjusted by varying the doping concentration. More importantly, the devices doped with low concentration AuCl3 exhibit good electrical properties including greatly improved electrical conductivity, 2–3 times higher in mobility than intrinsic carbon nanotubes. Furthermore, the effects of annealing on the electrical properties of the AuCl3-doping CNFETs are studied, demonstrating that the p-type doping effect reaches the optimized state at a temperature of 50 °C. Finally, first-principles calculation method is used to verify the doping control mechanism of Au3+ to carbon nanotubes. This research provides important guidance for realizing large-area low-power logic circuits and high-performance electronic devices in the future.
      通信作者: 孙翊淋, sunyl@bit.edu.cn ; 杨晓阔, yangxk0123@163.com ; 谢丹, xiedan@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52072204)、国家重点研发计划(批准号: 2016YFA0200200)、国家博士后创新人才支持计划(批准号: BX20200049)和陕西省自然科学基础研究计划 (批准号: 2021JM-221, 2020JQ-470)资助的课题.
      Corresponding author: Sun Yi-Lin, sunyl@bit.edu.cn ; Yang Xiao-Kuo, yangxk0123@163.com ; Xie Dan, xiedan@tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52072204), the National Key R&D Program of China (Grant No. 2016YFA0200200), the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20200049), and the Natural Science Basic Research Program of Shaanxi, China (Grant Nos. 2021JM-221, 2020JQ-470)
    [1]

    Waldrop M 2016 Nature 530 144Google Scholar

    [2]

    Markov I 2014 Nature 512 147Google Scholar

    [3]

    Wang H M, He M S, Zhang Y Y 2019 Acta Phys. Chim. Sin. 35 1207Google Scholar

    [4]

    Feng P, Xu W W, Yang Y, Wan X, Shi Y, Wan Q, Zhao J W, Cui Z 2017 Adv. Funct. Mater. 27 1604447Google Scholar

    [5]

    Esqueda I, Yan X D, Rutherglen C, Kane A, Cain T, Marsh P, Liu Q Z, Galatsis K, Wang H, Zhou C W 2018 ACS Nano 12 7352Google Scholar

    [6]

    Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L, Huang J 2019 Adv. Funct. Mater. 29 1903700Google Scholar

    [7]

    Zhong D L, Zhao C Y, Liu L J, Zhang Z Y, Peng L 2018 Appl. Phys. Lett. 112 153109Google Scholar

    [8]

    Kawanago T, Oda S 2017 Appl. Phys. Lett. 110 133507Google Scholar

    [9]

    Lee H, Kim J, Lee C 2016 Appl. Phys. Lett. 109 222105Google Scholar

    [10]

    Lee H, Shin J, Jeon P, Lee J, Kim J, Hwang H, Park E, Yoon W, Ju S, Im S 2015 Small 11 2132Google Scholar

    [11]

    Zschieschang U, Holzmann T, Kuhn A, Aghamohammadi M, Lotsch B V, Klauk H 2015 J. Appl. Phys. 117 104509Google Scholar

    [12]

    Choi H C, Shim M, Bangsaruntip S, Dai H 2002 J. Am. Chem. Soc. 124 9057Google Scholar

    [13]

    Shin N, Zessin J, Lee M H, Hambsch M, Mannsfeld S C B 2018 Adv. Funct. Mater. 28 1802265Google Scholar

    [14]

    Kharlamova M V, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H 2017 Nanoscale 9 7998Google Scholar

    [15]

    张华林, 何鑫, 张振华 2021 70 056101Google Scholar

    Zhang H L, He X, Zhang Z H 2021 Acta Phys. Sin. 70 056101Google Scholar

    [16]

    Shin D H, Kim J M, Jang C W, Kim J H, Kim S, Choi S H 2013 J. Appl. Phys. 113 064305Google Scholar

    [17]

    Choi D C, Kim M, Song Y J, Hussain S, Song W S, An K S, Jung J 2018 Appl. Surf. Sci. 427 48Google Scholar

    [18]

    Kim K K, Reina A, Shi Y, Park H, Li L J, Lee Y H, Kong J 2010 Nanotechnology 21 285205Google Scholar

    [19]

    王苏杰, 李树强, 吴小明, 陈芳, 江风益 2020 69 048103Google Scholar

    Wang S J, Li S Q, Wu X M, Chen F, Jiang F Y 2020 Acta Phys. Sin. 69 048103Google Scholar

    [20]

    Kim S M, Kim K K, Jo Y W, Park M H, Chae S J, Duong D L, Yang C W, Kong J, Lee Y H 2011 ACS Nano 5 1236Google Scholar

    [21]

    Xu J L, Dai R X, Xin Y, Sun Y L, Li X, Yu Y X, Xiang L, Xie D, Wang S D, Ren T L 2017 Sci. Rep. 76 751Google Scholar

    [22]

    Yoon S M, Kim U J, Benayad A, Lee I H, Son H, Shin H J, Choi W M, LeeY H, Jin Y W, Lee E H, Lee S Y, Choi J Y, Kim J M 2011 ACS Nano 5 1352Google Scholar

    [23]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Kresse G, Joubert D 1999 Phys. Lett. B 59 1758Google Scholar

    [27]

    Blöchl P E 1994 Phys. Lett. B 50 17953Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Lett. B 13 5188Google Scholar

  • 图 1  AuCl3掺杂碳纳米管器件的结构示意图

    Fig. 1.  Schematic illustration of the AuCl3-doped CNFET device.

    图 2  AuCl3掺杂碳纳米管的表面形貌及元素分析 (a) OM图; (b) AFM图; (c) SEM图; (d) EDS图谱

    Fig. 2.  (a) Optical image of the CNFET device; (b) AFM image; (c) SEM image of AuCl3-doping CNT; (d) energy-dispersive X-ray spectroscopy (EDX) mappings of the Au element.

    图 3  掺杂前后碳纳米管晶体管转移特性曲线以及掺杂后晶体管的输出特性曲线

    Fig. 3.  (a) Transfer curves (Ids-Vg) of pristine and AuCl3-doping CNFET; (b) output curves (Ids-Vds) of the AuCl3-doping CNFET.

    图 4  (a) 不同掺杂浓度下碳纳米管的拉曼光谱; (b) 不同掺杂浓度下碳纳米管晶体管的转移特性曲线, 漏源电压Vds被固定在–1 V; (c) 阈值电压随AuCl3浓度的变化曲线, 插图为从转移特性曲线中提取阈值电压的计算方式; (d) 开关比以及迁移率随AuCl3浓度的变化曲线

    Fig. 4.  Modulation of the AuCl3 concentration on the electrical performance of CNFET: (a) Raman Spectra of the CNT under different doping concentrations; (b) the transfer curves (Ids-Vg) of a CNFET device with different doping concentrations, with the drain-source voltage fixed at –1 V; (c) threshold voltage value of the doped CNFET device as a function of AuCl3 concentration. The inset illustrates the calculation method of threshold voltage extracted from transfer curves; (d) ON/OFF current ratio (Ion/Ioff) and the field-effect mobility ratio (μratio = μdoped/μpristine) as a function of the doping concentrations.

    图 5  (a) 开关比以及迁移率随退火温度的变化曲线; (b) 迁移率的比值随退火温度的变化

    Fig. 5.  (a) ON/OFF current ratio (Ion/Ioff) and threshold voltage value as a function of annealing temperature; (b) field-effect mobility ratio (μratio = μdoped/μpristine) as a function of annealing temperature.

    图 6   (a), (b) 碳纳米管与金/碳纳米管的晶胞结构; (c) 金/碳纳米管的二次差分密度图; (d) (10, 0)碳纳米管的能带结构图, 虚线为费米能级; (e) 金/碳纳米管系统的能带结构和投影能带, 灰色气泡为每个k点处碳元素的权重, 橙色气泡则为金元素对应的权重; (f) 金/碳纳米管系统的态密度和投影态密度, 黑色实线为总态密度, 灰色实线为投影到碳元素的态密度, 橙色实线为投影到金元素的态密度

    Fig. 6.  (a) (b) Crystal structures of CNT and Au/CNT are presented in; (c) Au/CNT difference charge density plot; (d) band structure of (10, 0) CNT, with dash line the Fermi energy; (e) band structure and projected band structure of each element, with solid line the total bands, gray bubble the projected weights of C, orange bubble the projected weights of Au; (f) total DOS and projected DOS, with black solid line the total DOS, gray solid line PDOS of C, orange solid line PDOS of Au.

    Baidu
  • [1]

    Waldrop M 2016 Nature 530 144Google Scholar

    [2]

    Markov I 2014 Nature 512 147Google Scholar

    [3]

    Wang H M, He M S, Zhang Y Y 2019 Acta Phys. Chim. Sin. 35 1207Google Scholar

    [4]

    Feng P, Xu W W, Yang Y, Wan X, Shi Y, Wan Q, Zhao J W, Cui Z 2017 Adv. Funct. Mater. 27 1604447Google Scholar

    [5]

    Esqueda I, Yan X D, Rutherglen C, Kane A, Cain T, Marsh P, Liu Q Z, Galatsis K, Wang H, Zhou C W 2018 ACS Nano 12 7352Google Scholar

    [6]

    Dai S L, Zhao Y W, Wang Y, Zhang J Y, Fang L, Jin S, Shao Y L, Huang J 2019 Adv. Funct. Mater. 29 1903700Google Scholar

    [7]

    Zhong D L, Zhao C Y, Liu L J, Zhang Z Y, Peng L 2018 Appl. Phys. Lett. 112 153109Google Scholar

    [8]

    Kawanago T, Oda S 2017 Appl. Phys. Lett. 110 133507Google Scholar

    [9]

    Lee H, Kim J, Lee C 2016 Appl. Phys. Lett. 109 222105Google Scholar

    [10]

    Lee H, Shin J, Jeon P, Lee J, Kim J, Hwang H, Park E, Yoon W, Ju S, Im S 2015 Small 11 2132Google Scholar

    [11]

    Zschieschang U, Holzmann T, Kuhn A, Aghamohammadi M, Lotsch B V, Klauk H 2015 J. Appl. Phys. 117 104509Google Scholar

    [12]

    Choi H C, Shim M, Bangsaruntip S, Dai H 2002 J. Am. Chem. Soc. 124 9057Google Scholar

    [13]

    Shin N, Zessin J, Lee M H, Hambsch M, Mannsfeld S C B 2018 Adv. Funct. Mater. 28 1802265Google Scholar

    [14]

    Kharlamova M V, Kramberger C, Saito T, Sato Y, Suenaga K, Pichler T, Shiozawa H 2017 Nanoscale 9 7998Google Scholar

    [15]

    张华林, 何鑫, 张振华 2021 70 056101Google Scholar

    Zhang H L, He X, Zhang Z H 2021 Acta Phys. Sin. 70 056101Google Scholar

    [16]

    Shin D H, Kim J M, Jang C W, Kim J H, Kim S, Choi S H 2013 J. Appl. Phys. 113 064305Google Scholar

    [17]

    Choi D C, Kim M, Song Y J, Hussain S, Song W S, An K S, Jung J 2018 Appl. Surf. Sci. 427 48Google Scholar

    [18]

    Kim K K, Reina A, Shi Y, Park H, Li L J, Lee Y H, Kong J 2010 Nanotechnology 21 285205Google Scholar

    [19]

    王苏杰, 李树强, 吴小明, 陈芳, 江风益 2020 69 048103Google Scholar

    Wang S J, Li S Q, Wu X M, Chen F, Jiang F Y 2020 Acta Phys. Sin. 69 048103Google Scholar

    [20]

    Kim S M, Kim K K, Jo Y W, Park M H, Chae S J, Duong D L, Yang C W, Kong J, Lee Y H 2011 ACS Nano 5 1236Google Scholar

    [21]

    Xu J L, Dai R X, Xin Y, Sun Y L, Li X, Yu Y X, Xiang L, Xie D, Wang S D, Ren T L 2017 Sci. Rep. 76 751Google Scholar

    [22]

    Yoon S M, Kim U J, Benayad A, Lee I H, Son H, Shin H J, Choi W M, LeeY H, Jin Y W, Lee E H, Lee S Y, Choi J Y, Kim J M 2011 ACS Nano 5 1352Google Scholar

    [23]

    张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明 2017 66 218103Google Scholar

    Zhang H, Cai X M, Hao Z L, Ruan Z L, Lu J C, Cai J M 2017 Acta Phys. Sin. 66 218103Google Scholar

    [24]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Kresse G, Joubert D 1999 Phys. Lett. B 59 1758Google Scholar

    [27]

    Blöchl P E 1994 Phys. Lett. B 50 17953Google Scholar

    [28]

    Monkhorst H J, Pack J D 1976 Phys. Lett. B 13 5188Google Scholar

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控.  , 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 董肖. P掺杂LiNH2团簇与LiH反应机理的密度泛函理论研究及一种新储放氢机制.  , 2023, 72(15): 153101. doi: 10.7498/aps.72.20230374
    [3] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究.  , 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [4] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究.  , 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [5] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究.  , 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [6] 张凤春, 李春福, 张丛雷, 冉曾令. H2S, HS自由基以及S原子在Fe(111)表面吸附的密度泛函研究.  , 2014, 63(12): 127101. doi: 10.7498/aps.63.127101
    [7] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算.  , 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [8] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究.  , 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [9] 袁健美, 郝文平, 李顺辉, 毛宇亮. Ni(111)表面C原子吸附的密度泛函研究.  , 2012, 61(8): 087301. doi: 10.7498/aps.61.087301
    [10] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究.  , 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [11] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究.  , 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [12] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究.  , 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [13] 陈国栋, 王六定, 安博, 杨敏, 曹得财, 刘光清. 氮掺杂及水分子吸附碳纳米管电子场发射第一性原理研究.  , 2009, 58(2): 1190-1194. doi: 10.7498/aps.58.1190
    [14] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究.  , 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [15] 陈亮, 徐灿, 张小芳. 氧化镁纳米管团簇电子结构的密度泛函研究.  , 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [16] 林峰, 郑法伟, 欧阳方平. H2O在SrTiO3-(001)TiO2表面上吸附和解离的密度泛函理论研究.  , 2009, 58(13): 193-S198. doi: 10.7498/aps.58.193
    [17] 杨培芳, 胡娟梅, 滕波涛, 吴锋民, 蒋仕宇. Rh在单壁碳纳米管上吸附的密度泛函理论研究.  , 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [18] 赵华波, 李震, 李睿, 张朝晖, 张岩, 刘宇, 李彦. 碳纳米管网络导电特征的导电型原子力显微镜研究.  , 2009, 58(12): 8473-8477. doi: 10.7498/aps.58.8473
    [19] 王昆鹏, 师春生, 赵乃勤, 杜希文. B(N)掺杂单壁碳纳米管的Al原子吸附性能的第一性原理研究.  , 2008, 57(12): 7833-7840. doi: 10.7498/aps.57.7833
    [20] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究.  , 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
计量
  • 文章访问数:  5068
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-31
  • 修回日期:  2021-07-12
  • 上网日期:  2021-08-17
  • 刊出日期:  2021-12-05

/

返回文章
返回
Baidu
map