-
为探索单晶金刚石材料在辐射探测器上的应用, 尤其是用于监测D-T中子源产生的14 MeV单能中子束流, 研制了高性能单晶金刚石辐射探测器, 并在中国工程物理研究院K-400型中子发生器上测试其对14 MeV单能中子的响应. 利用Geant4蒙特卡罗仿真程序, 结合ENDF-VIII.0, JEFF-3.3, BROND-3.1, JENDL-4.0u和CENDL-3.1五个评价核数据库对14 MeV单能中子在金刚石中的能量沉积和探测效率进行模拟计算和对比, 并给出了仿真能量沉积谱展宽和实测谱能量刻度的方法. 研究结果表明, 利用CENDL-3.1库计算本文的仿真模型, 可以更精准地模拟14 MeV中子入射金刚石探测器能量沉积情况, 结合本文给出的能量沉积谱刻度和展宽方法能够很好地匹配实测中子谱12C(n, α)9Be特征峰, 其对于弹性散射和12C(n, 3α)相较其他核数据库的描述也更为准确, 仿真计算探测效率与实际测量值仅相差0.61%; 在长达2 h、2 × 1010 n/s的高通量测试环境下, 探测器对于12C(n, α)9Be反应特征峰的探测效率、能量分辨率和峰位道址基本保持稳定, 有望用于14 MeV快中子束流的监测.
-
关键词:
- 单晶金刚石 /
- 14 MeV中子监测 /
- 蒙特卡罗模拟 /
- 能谱测量
Single-crystal diamond (SCD) detectors promise to have applications in neutron spectrometers and fusion neutron monitoring under high flux deuterium plasma. The response to 14 MeV neutrons for the SCD detector is studied in this paper. A high-performance SCD neutron detector is developed by processing cleaning wafer, depositing metal electrodes, annealing and wire-bonding. A fast-neutrons monitoring system containing the detector, preamplifier and digital multichannel analyzer is constructed, and the response to 14 MeV neutrons for the detector is measured on the K-400 neutron generator supported by China Academy of Engineering Physics. In addition, computational simulations of the energy deposition and detection efficiency of 14 MeV neutron through diamond are performed via Geant4 toolkit based on evaluated nuclear data libraries of ENDF-VIII.0, JEFF-3.3, BROND-3.1, JENDL-4.0u and CENDL-3.1. The methods of widening the simulation spectrum and calibration of measuring spectrum are presented in order that simulation results are in reasonable agreement with measured values. The results indicate that the energy deposition of 14 MeV neutrons incident on the 12C can be more accurately calculated with CENDL-3.1 than with other data libraries. The elastic scattering and reaction of 12C(n, 3α) are described more accurately with the CENDL-3.1, and the characteristic peaks of 12C(n, α)9Be matched well the calibrated testing spectrum and the after-widening simulation spectrum, with a difference between the simulated detection efficiency and measuring results being as low as 0.61%. The outcome measures are described as the standardized mean difference, with a detection efficiency of (3.31 × 10–4 ± 0.11 × 10–4) counts/n, an energy resolution of 4.02% ± 0.09%, and a peaking channel of 1797.24 ± 0.80, which suggest that the detector keeps stable well under a high neutron flux of 2 × 1010 n/s for as long as 2 h. The results demonstrate that the SCD detector can be a promising candidate for monitoring 14 MeV D-T neutrons.-
Keywords:
- single-crystal diamond /
- 14 MeV neutron monitoring /
- Monte-Carol simulation /
- spectrum measurement
[1] Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar
[2] Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar
[3] Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar
[4] 罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页
Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)
[5] Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar
[6] Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar
[7] Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar
[8] Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar
[9] Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar
[10] Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar
[11] Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar
[12] Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar
[13] Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar
[14] Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar
[15] Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar
[16] Element sixTM https://www.e6.com/ [2021-5-12]
[17] Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar
[18] Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar
[19] Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar
[20] 李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar
Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar
[21] 石睿 2018 博士学位论文(成都: 成都理工大学)
Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)
-
图 7 金刚石探测器长时间稳定性测量结果 (a) 探测效率随测量时间的变化; (b) 能量分辨率随测量时间的变化; (c)峰位道址随测量时间的变化
Fig. 7. Long-term stability measurement results of the single-crystal diamond detector: (a), (b) and (c) respectively represent the results of detection efficiency, energy resolution, and peak channel that change over measuring time.
表 1 12C与中子主要相互作用方式
Table 1. Main interaction modes between 12C and neutron.
反应方式 反应Q 值/MeV 带电粒子产物能量 12C(n, α)9Be 5.701 8.299 12C(n, 3α) 7.275 6.725 12C(n, n)12C 0 3.977 12C(n, p)12B 12.587 1.413 12C(n, d)11B 13.732 0.268 表 2 不同核数据库12C(n, α)9Be反应特征峰统计结果
Table 2. Statistical results of characteristic peaks of 12C(n, α)9Be reaction calculated via different nuclear databases.
核数据库 ENDF-VIII.0 JEFF-3.3 BROND-3.1 JENDL-4.0u CENDL-3.1 粒子沉积数/个 9766 9612 9814 10969 9862 探测效率/(10–4 counts·n–1) 3.26 3.20 3.27 3.66 3.29 统计不确定度/% 1.01 1.02 1.01 0.95 1.01 -
[1] Thomas D, Bedogni R, Méndez R, Thompson AZimbal A 2018 Radiat. Prot. Dosim. 180 21Google Scholar
[2] Bertalot L, Krasilnikov V, Core L, Saxena A, Yukhnov N, Barnsley R, Walsh M 2019 J. Fusion Energ. 38 283Google Scholar
[3] Cazzaniga C, Sunden E A, Binda F, et al. 2014 Rev. Sci. Instrum. 85 43506Google Scholar
[4] 罗均华 2021 14 MeV中子物理及截面测量 (北京: 科学出版社) 第17页
Luo J H 2021 14MeV Neutron Physics and Cross Section Measurements (Beijing: Science Press) p17 (in Chinese)
[5] Osipenko M, Ripani M, Ricco G, Caiffi B, Pompili F, Pillon M, Angelone M, Verona-Rinati G, Cardarelli R, Mila G, Argiro S 2015 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 799 207Google Scholar
[6] Weilhammer P, Adam W, Bauer C, et al. 1998 Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment 409 264Google Scholar
[7] Isberg J, Hammersberg J, Johansson E, Wikström T, Twitchen D J, Whitehead A J, Coe S E, Scarsbrook G A 2002 Science (American Association for the Advancement of Science) 297 1670Google Scholar
[8] Lee C, Ban C, Lee H, Choo K, Jun B 2019 Appl. Radiat. Isotopes 152 25Google Scholar
[9] Tallaire A, Collins A T, Charles D, Achard J, Sussmann R, Gicquel A, Newton M E, Edmonds A M, Cruddace R J 2006 Diam. Relat. Mater. 15 1700Google Scholar
[10] Laub W U, Kaulich T W, Nüsslin F 1999 Physics in Medicine & Biology 44 2183Google Scholar
[11] Schirru F, Kisielewicz K, Nowak T, Marczewska B 2010 Journal of Physics. D, Applied Physics 43 265101Google Scholar
[12] Zbořil MZimbal A 2014 Rev. Sci. Instrum. 85 11DGoogle Scholar
[13] Pillon M, Angelone M, Batistoni P, Loreti S, Milocco A 2016 Fusion Eng. Des. 106 93Google Scholar
[14] Dankowski J, Drozdowicz K, Kurowski A, Wiącek U, Nowak T, Zabila Y 2017 Diam. Relat. Mater. 79 88Google Scholar
[15] Giacomelli L, Nocente M, Rebai M, et al. 2016 Rev. Sci. Instrum. 87 11DGoogle Scholar
[16] Element sixTM https://www.e6.com/ [2021-5-12]
[17] Pillon M, Angelone M, Krása A, Plompen A J M, Schillebeeckx P, Sergi M L 2011 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 640 185Google Scholar
[18] Agostinelli S, Allison J, Amako K, et al. 2003 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 250Google Scholar
[19] Ge Z G, Zhao Z X, Xia H H, Zhuang Y X, Liu T J, Zhang J SWu H C 2011 J. Korean Phys. Soc. 59 1052Google Scholar
[20] 李福龙, 张雄杰, 王仁波 2013 核电子学与探测技术 33 1266Google Scholar
Li F L, Zhang X J, Wang R B 2013 Nuclear Electronics & Detection Technology 33 1266Google Scholar
[21] 石睿 2018 博士学位论文(成都: 成都理工大学)
Shi R 2018 Ph. D. Dissertation (Chengdu: Chengdu University of Technology) (in Chinese)
计量
- 文章访问数: 6769
- PDF下载量: 172
- 被引次数: 0