搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电致红外发射率动态调控器件研究进展

程柏璋 祝玉林 伊洋 陶鑫 贾岩 刘东青 程海峰

引用本文:
Citation:

电致红外发射率动态调控器件研究进展

程柏璋, 祝玉林, 伊洋, 陶鑫, 贾岩, 刘东青, 程海峰

Research progress of infrared electrochromic devices

Cheng Bai-Zhang, Zhu Yu-Lin, Yi Yang, Tao Xin, Jia Yan, Liu Dong-Qing, Cheng Hai-Feng
PDF
HTML
导出引用
  • 电致红外发射率动态调控器件是一类在电场激励下红外发射率能发生可逆动态变化的器件, 该类器件在自适应红外伪装、航天器智能热控等领域具有重要应用价值, 已成为红外辐射调控领域的研究前沿和热点. 本文概述了基于金属氧化物、导电聚合物、石墨烯、金属等材料的电致红外发射率动态调控器件的工作原理、研究进展, 并分析了电致红外发射率动态调控器件的发展趋势.
    Infrared electrochromic device is a kind of device whose infrared emissivity can change reversibly under electric field excitation. This kind of device has important applications in the fields of adaptive infrared camouflage and intelligent thermal control, and has become a research frontier and hot spot in the field of infrared radiation control. In this paper, the working principle, research status and progress of infrared electrochromic devices based on metal oxides, conductive polymers, graphene and metals are summarized, and the development trend of infrared electrochromic device is analyzed.
      通信作者: 刘东青, liudongqing07@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52073303)资助的课题
      Corresponding author: Liu Dong-Qing, liudongqing07@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52073303)
    [1]

    Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar

    [2]

    Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar

    [3]

    Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar

    [4]

    Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar

    [5]

    Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar

    [6]

    Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar

    [7]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [8]

    Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar

    [9]

    Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar

    [10]

    Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar

    [11]

    Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar

    [12]

    Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar

    [13]

    Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203

    [14]

    Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar

    [15]

    Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar

    [16]

    Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699

    [17]

    Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar

    [18]

    Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar

    [19]

    Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar

    [20]

    Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar

    [21]

    Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar

    [22]

    Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar

    [23]

    Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar

    [24]

    Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar

    [25]

    Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar

    [26]

    Demiryont H 2008 SPIE 10.1117

    [27]

    Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar

    [28]

    Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330

    [29]

    Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar

    [30]

    Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar

    [31]

    Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar

    [32]

    Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar

    [33]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [34]

    Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar

    [35]

    Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar

    [36]

    Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar

    [37]

    Meisel T, Braun R 1992 SPIE 200 1728Google Scholar

    [38]

    Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar

    [39]

    Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar

    [40]

    Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar

    [41]

    Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar

    [42]

    Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar

    [43]

    Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar

    [44]

    Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [45]

    Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar

    [46]

    Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar

    [47]

    Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar

    [48]

    Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar

    [49]

    Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [51]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar

    [52]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [53]

    Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [54]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [55]

    Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar

    [56]

    Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar

    [57]

    Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar

    [58]

    Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar

    [59]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [60]

    Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar

    [61]

    Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar

    [62]

    Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar

    [63]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [64]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [65]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [66]

    Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar

    [67]

    Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar

    [68]

    Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar

    [69]

    Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar

    [70]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar

    [71]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar

    [72]

    Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar

    [73]

    Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar

  • 图 1  不同类型的WO3电致发射率动态调控器件 (a)多孔电极式[13]; (b)半导体电极式[19]; (c)金属网格电极式[18]; (d)超材料电极式[27]; (e) ITO电极式[29]

    Fig. 1.  Several WO3 infrared electrochromic devices: (a) Device with porous electrode[13]; (b) device with semiconductor electrode[19]; (c) device with metal grid electrode[18]; (d) device with metamaterials electrode[27]; (e) device with ITO electrode[29].

    图 2  (a) LTO器件结构及工作原理示意图[32]; (b) LTO相变过程示意图[32]; (c) 器件在不同状态下的反射率曲线[32]

    Fig. 2.  (a) Schematic diagram of structure and working principle of LTO device[32]; (b) phase transition process of LTO[32]; (c) the reflectivity curves of the LTO device in different states[32].

    图 3  (a) VO2器件结构示意图[34]; (b)器件高发射率态的红外热图[34]; (c)器件低发射率态的红外热图[34]

    Fig. 3.  (a) Schematic diagram of structure of VO2 device[34]; (b) thermal image of VO2 device in high emissivity state[34]; (c) thermal image of VO2 device in low emissivity state[34].

    图 4  (a)金属网格电极器件结构[38]; (b)多孔电极器件结构[11]

    Fig. 4.  (a) The structural diagram of device with metal grid electrode[38]; (b) the structural diagram of the device with porous electrode[11].

    图 5  (a)透射式噻吩器件结构及红外透过性调控效果[46]; (b)横向式噻吩器件结构及红外热图[47]

    Fig. 5.  (a) The structure and regulation effect of infrared transmittance of transmission thiophene device[46]; (b) structure and infrared discoloration image of transverse discoloration thiophene device[47].

    图 6  (a)石墨烯器件结构及红外热图[56]; (b)织物石墨烯器件外观及反射率光谱[57]

    Fig. 6.  (a) Structure and thermal map of graphene device[56]; (b) appearance and reflectivity curves of fabric graphene device[57].

    图 7  (a)多壁碳纳米管器件结构示意图[61]; (b)多壁碳纳米管微观结构示意图[61]; (c)柔性器件的红外伪装效果[61]; (d)不同掺杂程度器件的红外热图[61]

    Fig. 7.  (a) Structure diagram of multi-walled CNT device[61]; (b) schematic diagram of microstructure of multi-walled CNT[61]; (c) infrared camouflage effect of flexible multi-walled CNT device[61]; (d) infrared thermal maps of multi-walled CNT devices in different states[61].

    图 8  (a)超表面石墨烯器件表面微元结构示意图[65]; (b)金纳米微元阵列[65]; (c)不同栅极电压下的器件反射率光谱[65]

    Fig. 8.  (a) Chematic diagram of surface microelement structure of metasurface graphene device[65]; (b) gold electrode array[65]; (c) IR reflectance curves of the device for different gate voltages[65].

    图 9  (a)基于石墨烯电极的器件的结构及红外热图[70]; (b) 基于Pt电极刚性器件的工作过程及不同通电时间下的反射率曲线[71]; (c)基于Pt电极柔性器件的红外伪装效果及不同通电时间下柔性器件的反射率曲线[71]

    Fig. 9.  (a) Schematic diagram of device structure and thermal maps based on graphene electrode[70]; (b) diagram of working process and the reflectivity curves of rigid device based on Pt electrode at different times of energization[71]; (c) infrared camouflage effect and reflectivity curves of flexible device at different times of energization[71].

    表 1  几类红外发射率动态调控器件的主要性能最优值[17,27,32,34,39,45,56,61,71]

    Table 1.  The optimum values of main performance of several kinds of IR emissivity adjustable devices[17,27,32,34,39,45,56,61,71].

    主要性能金属氧化物类导电聚合物类石墨烯类金属类
    调控量0.800 (7—12 μm)0.553 (8—14 μm)0.550 (7.5—13 μm)0.770 (8—14 μm)
    响应时间/s1.61.01$ \times $10–910
    循环寿命/次1000009003500400
    多波段兼容性红外可见光-红外可见光-红外-微波可见光-红外
    工艺复杂程度较复杂简单复杂简单
    制备成本较高较低较高
    下载: 导出CSV
    Baidu
  • [1]

    Lin S, Ai L, Zhang J, Bu T, Li H, Huang F, Zhang J, Lu Y, Song W 2019 Sol. Energy Mater Sol. Cells 203 110135Google Scholar

    [2]

    Kim D G, Han K I, Choi J H, Kim T K 2016 J. Mech. Sci. Technol. 30 4801Google Scholar

    [3]

    Hong S, Shin S, Chen R 2020 Adv. Funct. Mater. 30 1909788Google Scholar

    [4]

    Morin S A, Shepherd R F, Kwok S W, Stokes A A, Nemiroski A, Whitesides G M 2012 Science 337 828Google Scholar

    [5]

    Aliasi G, Mengali G, Quarta A A 2013 J. Guid. Control. Dynam. 36 1544Google Scholar

    [6]

    Tao X, Liu D Q, Yu J S, Cheng H F 2021 Adv. Optial. Mater. 9 2001847Google Scholar

    [7]

    Kumar S, Pickett M D, Strachan J P, Gibson G, Nishi Y, Williams R S 2013 Adv. Mater. 25 6128Google Scholar

    [8]

    Xu C Y, Stiubianu G T, Gorodetsky A A 2018 Mater. Sci. 359 1495Google Scholar

    [9]

    Leung E M, Colorado Escobar M, Stiubianu G T, Jim S R, Vyatskikh A L, Feng Z, Garner N, Patel P, Naughton K L, Follador M, Karshalev E, Trexler M D, Gorodetsky A A 2019 Nat. Commun. 10 1947Google Scholar

    [10]

    Xu G, Zhang L, Wang B, Chen X, Dou S, Pan M, Ren F, Li X, Li Y 2020 Sol. Energy Mater. Sol. Cells 208 110356Google Scholar

    [11]

    Xu G, Zhang L, Wang B, Ren Z, Chen X, Dou S, Ren F, Wei H, Li X, Li Y 2020 J. Mater. Chem. C 8 13336Google Scholar

    [12]

    Reid C D, Mcalister E D 1959 J. Opt. Soc. Am. B 49 78Google Scholar

    [13]

    Huchler M, Natusch A, Rothmund W 1995 25th International Conference on Environmental Systems San Diego, California July 10−13, 1995 p1203

    [14]

    Huang Y S, Zhang Y Z, Zeng X T, Hu X F 2002 Appl. Surf. Sci. 202 104Google Scholar

    [15]

    Bergeron B V, White K C, Boehme J L, Gelb A H, Joshi P B 2008 J. Phys. Chem. C 112 832Google Scholar

    [16]

    Kislov N, Groger H, Ponnappan R, Caldwell E, Douglas D, Swanson T 2004 Space Technology and Applications International Forum {minus}. Proceedings July 25−29, 1998 p699

    [17]

    Franke E, Neumann H, Schubert M, Trimble C L, Yan L, Woollam J A 2002 Surf. Coat. Technol. 151 285Google Scholar

    [18]

    Franke E B, Trimble C L, Schubert M, Woollam J A, Hale J S 2000 Appl. Phys. Lett. 77 930Google Scholar

    [19]

    Franke E B, Trimble C L, Hale J S, Schubert M, Woollam J A 2000 J. Phys. D 88 5777Google Scholar

    [20]

    Cogan S F, David R, Klein J D, Nguyen N M, Jones R B, Plante T D 1997 J. Electrochem. Soc. 144 956Google Scholar

    [21]

    Trimble C L, Franke E, Hale J S, Woollam J A 2000 AIP Conf. Proc. 504 797Google Scholar

    [22]

    Kislov N, Groger H, Ponnappan R 2003 AIP Conf. Proc. 654 172Google Scholar

    [23]

    Larsson A L, Niklasson G A 2004 Mater.Lett. 58 2517Google Scholar

    [24]

    Sauvet K, Rougier A, Sauques L 2008 Sol. Energy Mater. Sol. Cells 92 209Google Scholar

    [25]

    Sauvet K, Sauques L, Rougier A 2010 J. Phys. Chem. Solids 71 696Google Scholar

    [26]

    Demiryont H 2008 SPIE 10.1117

    [27]

    Demiryont H, Moorehead D 2009 Sol. Energy Mater. Sol. Cells 93 2075Google Scholar

    [28]

    Cox J L, Shannon III K C, Motaghedi P, Sheets J, Groger H, Williams A 2009 Sensors and Systems for Space Applications III St. Petersburg, 2009 p7330

    [29]

    Zhang X, Tian Y, Li W, Dou S, Wang L, Qu H, Zhao J, Li Y 2019 Sol. Energy Mater. Sol. Cells 200 109916Google Scholar

    [30]

    Li M, Gould T, Su Z, Li S, Pan F, Zhang S 2019 Appl. Phys. Lett. 115 073902Google Scholar

    [31]

    Joshi Y, Saksena A, Hadjixenophontos E, Schneider J M, Schmitz G 2020 ACS Appl. Mater. Interfaces 12 10616Google Scholar

    [32]

    Mandal J, Du S, Dontigny M, Zaghib K, Yu N, Yang Y 2018 Adv. Funct. Mater. 28 1802180Google Scholar

    [33]

    Freeman E, Stone G, Shukla N, Paik H, Moyer J A, Cai Z, Wen H, Herbert R, Schlom D G, Gopalan V, Datta S 2013 Appl. Phys. Lett. 103 263109Google Scholar

    [34]

    Xiao L, Ma H, Liu J, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan S, Jiang K 2015 Nano Lett. 15 8365Google Scholar

    [35]

    Zhu S S, Swager T M 1997 J. Am. Chem. Soc. 119 12568Google Scholar

    [36]

    Hellström S, Henriksson P, Kroon R, Wang E, Andersson M R 2011 Org. Electron. 12 1406Google Scholar

    [37]

    Meisel T, Braun R 1992 SPIE 200 1728Google Scholar

    [38]

    Topart P, Hourquebie P 1999 Thin Solid Films 352 243Google Scholar

    [39]

    Chandrasekhar P, Zay B J, Birur G C, Rawal S, Pierson E A, Kauder L, Swanson T 2002 Adv. Funct. Mater. 12 95Google Scholar

    [40]

    Chandrasekhar P, Zay B J, McQueeney T, Birur G C, Sitaram V, Menon R, Coviello M, Elsenbaumer R L 2005 Synth. Met. 155 623Google Scholar

    [41]

    Tian Y, Zhang X, Dou S, Zhang L, Zhang H, Lv H, Wang L, Zhao J, Li Y 2017 Sol. Energy Mater. Sol. Cells 170 120Google Scholar

    [42]

    Zhang L, Xia G, Li X, Xu G, Wang B, Li D, Gavrilyuk A, Zhao J, Li Y 2019 Synth. Met. 248 88Google Scholar

    [43]

    Zhang L, Wang B, Li X, Xu G, Dou S, Zhang X, Chen X, Zhao J, Zhang K, Li Y 2019 J. Phys. Chem. C 7 9878Google Scholar

    [44]

    Groenendaal L B, Freitag J, Pielartzik H, Reynolds J R 2000 Adv. Mater. 12 481Google Scholar

    [45]

    Holt A L, Wehner J G A, Hammp A, Morse D E 2010 Macromol. Chem. Phys. 211 1701Google Scholar

    [46]

    Kim B, Koh J K, Park J, Ahn C, Ahn J, Kim J H, Jeon S 2015 Nano Converg. 2 19Google Scholar

    [47]

    Brooke R, Mitraka E, Sardar S, Sandberg M, Sawatdee A, Berggren M, Crispin X, Jonsson M P 2017 J. Mater. Chem. C 5 5824Google Scholar

    [48]

    Petroffe G, Beouch L, Cantin S, Aubert P H, Plesse C, Dudon J P, Vidal F, Chevrot C 2018 Sol. Energy Mater. Sol. Cells 177 23Google Scholar

    [49]

    Petroffe G, Beouch L, Cantin S, Chevrot C, Aubert P H, Dudon J P, Vidal F 2019 Sol. Energy Mater. Sol. Cells 200 110035Google Scholar

    [50]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [51]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nat. Commun. 3 780Google Scholar

    [52]

    Zhang B Y, Liu T, Meng B, Li X, Liang G, Hu X, Wang Q J 2013 Nat. Commun. 4 1811Google Scholar

    [53]

    Nair R R, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K 2008 Science 320 1308Google Scholar

    [54]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [55]

    Wang Y, Liu H, Wang S, Cai M, Ma L 2019 Crystals 9 354Google Scholar

    [56]

    Salihoglu O, Uzlu H B, Yakar O, Aas S, Balci O, Kakenov N, Balci S, Olcum S, Suzer S, Kocabas C 2018 Nano Lett. 18 4541Google Scholar

    [57]

    Ergoktas M S, Bakan G, Steiner P, Bartlam C, Malevich Y, Yenigun E O, He G, Karim N, Cataldi P, Bissett M A, Kinloch I A, Novoselov K S, Kocabas C 2020 Nano Lett. 20 5346Google Scholar

    [58]

    Ergoktas M S, Bakan G, Kovalska E, Le Fevre L W, Fields R P, Steiner P, Yu X, Salihoglu O, Balci S, Fal’ko V I, Novoselov K S, Dryfe R A W, Kocabas C 2021 Nat. Photonics 10 1038Google Scholar

    [59]

    Gladush Y, Mkrtchyan A A, Kopylova D S, Ivanenko A, Nyushkov B, Kobtsev S, Kokhanovskiy A, Khegai A, Melkumov M, Burdanova M, Staniforth M, Lloyd-Hughes J, Nasibulin A G 2019 Nano Lett. 19 5836Google Scholar

    [60]

    Wang F, Itkis M E, Bekyarova E, Haddon R C 2013 Nat. Photonics 7 459Google Scholar

    [61]

    Sun Y, Chang H, Hu J, Wang Y, Weng Y, Zhang C, Niu S, Cao L, Chen Z, Guo N, Liu J, Chi J, Li G, Xiao L 2020 Adv. Optical Mater. 9 2001216Google Scholar

    [62]

    Jun Y C, Gonzales E, Reno J L, Shaner E A, Gabbay A, Brener I 2012 Opt. Express 20 1903Google Scholar

    [63]

    Zhang Y, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201Google Scholar

    [64]

    Yao Y, Kats M A, Genevet P, Yu N, Song Y, Kong J, Capasso F 2013 Nano Lett. 13 1257Google Scholar

    [65]

    Zeng B, Huang Z, Singh A, Yao Y, Azad A K, Mohite A D, Taylor A J, Smith D R, Chen H T 2018 Light Sci. Appl. 7 51Google Scholar

    [66]

    Zaromb S 1962 J. Electrochem. Soc. 109 912Google Scholar

    [67]

    Zaromb S 1962 J. Electrochem. Soc. 109 906Google Scholar

    [68]

    Camlibel I, Singh S, Stocker H J, VanUitert L G, Zydzik G J 1978 Appl. Phys. Lett. 33 793Google Scholar

    [69]

    Barile C J, Slotcavage D J, Hou J, Strand M T, Hernandez T S, McGehee M D 2017 Joule 1 133Google Scholar

    [70]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2020 J. Mater. Chem. C 8 8538Google Scholar

    [71]

    Li M Y, Liu D Q, Cheng H F, Peng L, Zu M 2021 Sci. Adv. 6 3494Google Scholar

    [72]

    Yin X, Chen Q, Pan N 2013 Exp. Therm. Fluid Sci. 46 211Google Scholar

    [73]

    Wu G, Yu D 2013 Prog. Org. Coat. 76 107Google Scholar

  • [1] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器.  , 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [2] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器.  , 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [3] 程柏璋, 刘东青. 电致红外发射率动态调控器件研究进展.  , 2021, (): .
    [4] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控.  , 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [5] 李永明, 王亮, 陈想林, 阮念寿, 赵德山. 252Cf自发裂变中子发射率符合测量的回归分析.  , 2018, 67(24): 242901. doi: 10.7498/aps.67.20181073
    [6] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控.  , 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [7] 冯维, 张福民, 王惟婧, 曲兴华. 基于数字微镜器件的自适应高动态范围成像方法及应用.  , 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [8] 张璐, 董云松, 景龙飞, 林雉伟, 谭秀兰, 况龙钰, 黎航, 尚万里, 张文海, 李志超, 詹夏宇, 袁光辉, 李海, 江少恩, 杨家敏, 丁永坤. 低密度泡沫金提升黑腔腔壁再发射率的实验研究.  , 2016, 65(1): 015202. doi: 10.7498/aps.65.015202
    [9] 刘俊岩, 秦雷, 宋鹏, 龚金龙, 王扬, A. Mandelis. 硅太阳能电池的调制载流子红外辐射动态响应与参数分析.  , 2014, 63(22): 227801. doi: 10.7498/aps.63.227801
    [10] 于海涛, 王江. 基于反演自适应动态滑模的FitzHugh-Nagumo神经元混沌同步控制.  , 2013, 62(17): 170511. doi: 10.7498/aps.62.170511
    [11] 金铭, 白明, 苗俊刚. 阵列型微波黑体的发射率分析.  , 2012, 61(16): 164211. doi: 10.7498/aps.61.164211
    [12] 黄建国, 韩建伟. 航天器内部充电效应及典型事例分析.  , 2010, 59(4): 2907-2913. doi: 10.7498/aps.59.2907
    [13] 田启祥, 刘胜超. In2O3/SnO2薄膜的制备及光谱反射性能研究.  , 2010, 59(1): 541-544. doi: 10.7498/aps.59.541
    [14] 罗群, 高雅, 齐雅楠, 吴桐, 许欢, 李丽香, 杨义先. 融合复杂动态网络的模型参考自适应同步研究.  , 2009, 58(10): 6809-6817. doi: 10.7498/aps.58.6809
    [15] 张 敏, 胡寿松. 不确定时滞混沌系统的自适应动态神经网络控制.  , 2008, 57(3): 1431-1438. doi: 10.7498/aps.57.1431
    [16] 高 洋, 李丽香, 彭海朋, 杨义先, 张小红. 多重边融合复杂动态网络的自适应同步.  , 2008, 57(4): 2081-2091. doi: 10.7498/aps.57.2081
    [17] 张维佳, 王天民, 钟立志, 吴小文, 崔 敏. ITO导电膜红外发射率理论研究.  , 2005, 54(9): 4439-4444. doi: 10.7498/aps.54.4439
    [18] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅰ)线性自适应滤波.  , 2003, 52(5): 1096-1101. doi: 10.7498/aps.52.1096
    [19] 甘建超, 肖先赐. 基于相空间邻域的混沌时间序列自适应预测滤波器(Ⅱ)非线性自适应滤波.  , 2003, 52(5): 1102-1107. doi: 10.7498/aps.52.1102
    [20] 徐积仁, 黄南堂, 蒋义枫, 傅广生, 吴振球. 强红外场作用下BCl3振动态传能动力学研究.  , 1983, 32(7): 854-866. doi: 10.7498/aps.32.854
计量
  • 文章访问数:  8293
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-05-17
  • 上网日期:  2021-10-11
  • 刊出日期:  2021-10-20

/

返回文章
返回
Baidu
map