-
碳化硅(SiC)半导体具有宽禁带、高临界击穿电场、高热导率等优异性能, 在高温、高频、大功率、低功耗器件领域具有广阔的应用前景, 因此, 高效节能的SiC电力电子器件研究备受关注. 然而, 阻碍SiC器件发展应用的一个重要瓶颈是高性能的金属接触制备困难. 本文通过对比分析SiC器件欧姆接触和肖特基接触制备的研究现状, 揭示了金属/SiC接触界面特性复杂, 肖特基势垒不可控等关键问题; 对金属/SiC接触势垒及界面态性质的研究现状进行分析, 强调了对界面势垒进行有效调控的重要意义; 重点分析了近年来金属/SiC接触界面调控技术方面的重要进展, 同时, 对金属/SiC接触界面态本质及界面调控技术研究未来发展的方向进行了展望.Silicon carbide (SiC) is a promising candidate for applications in high temperature, high voltage, high power, and low-power dissipation devices due to its unique properties like wide band gap, high critical electric field, and high thermal conductivity. However, one of the main bottlenecks hindering the SiC power devices from developing and being put into practical application is the fabrication of good metal/SiC contact. In this review, the research status of Ohmic contact and Schottky contact of SiC device are compared and analyzed. The complicated interface properties and uncontrollable barrier height at metal/SiC interface are revealed. In addition, the research status of metal/SiC contact barrier and interface state properties are analyzed, and the important significance of effective control of interface barrier is highlighted. Furthermore, the research progress of metal/SiC contact interface regulation technology is specially analyzed. The future development directions in the nature of metal/SiC interface states and interface control technology are finally prospected.
[1] Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538
[2] 盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1
Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1
[3] She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar
[4] Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238
[5] Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar
[6] He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar
[7] Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar
[8] Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar
[9] Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar
[10] Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar
[11] Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar
[12] Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar
[13] Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar
[14] Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar
[15] Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar
[16] Addamiano A 1970 US Patent 3 510 733
[17] Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar
[18] Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar
[19] Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar
[20] Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar
[21] Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar
[22] Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar
[23] Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar
[24] Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar
[25] Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar
[26] Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar
[27] Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar
[28] Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683
[29] Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar
[30] Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar
[31] Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704
[32] Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar
[33] Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar
[34] Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531
[35] Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar
[36] Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar
[37] Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar
[38] Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar
[39] Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar
[40] Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar
[41] Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar
[42] Heine V 1965 Phys. Rev. 138 1689Google Scholar
[43] Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174
[44] Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar
[45] Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar
[46] Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar
[47] Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5
[48] Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar
[49] Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar
[50] Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar
[51] Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar
[52] Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199
[53] Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar
[54] Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar
[55] Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar
[56] Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar
[57] Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar
[58] Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar
[59] Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar
[60] Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar
[61] Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480
[62] Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar
[63] Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar
[64] Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar
[65] Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar
[66] Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar
[67] Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar
[68] Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar
[69] Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar
[70] Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar
-
-
[1] Kimoto T, Cooper J A 2014 Fundamentals of Silicon Carbide Technology (Singapore: John Wiley & Sons Singapore Pte. Ltd) pp1−538
[2] 盛况, 郭清, 张军明, 钱照明 2012 中国电机工程学报 32 1
Sheng K, Guo Q, Zhang J M, Qian Z M 2012 Proc. Chin. Soc. Elect. Eng. 32 1
[3] She X, Huang A Q, Lucía Ó, Ozpineci B 2017 IEEE Trans. Ind. Electron. 64 8193Google Scholar
[4] Zekentes K 2018 Advancing Silicon Carbide Electronics Technology I: Metal Contacts to Silicon Carbide: Physics, Technology, Applications (Millersville: Materials Research Forum LLC) pp1−238
[5] Gao M M, Hu T T, Chen Z Z 2019 IEEE Trans. Electron Devices 66 3929Google Scholar
[6] He Y J, Lv H L, Tang X Y, Song Q W, Zhang Y M, Han C, Guo T, He X N, Zhang Y M, Zhang Y M 2019 J. Alloys Compd. 805 999Google Scholar
[7] Badila M, Brezeanu G, Millan J, Godignon P, Banu V 2002 Diamond Relat. Mater. 11 1258Google Scholar
[8] Cheng J C, Tsui B Y 2017 IEEE Electron Device Lett. 38 1700Google Scholar
[9] Omar S U, Sudarshan T S, Rana T A, Song H, Chandrashekhar M 2015 IEEE Trans. Electron Devices 62 615Google Scholar
[10] Vivona M, Greco G, Bongiorno C, Nigro R L, Scalese S, Roccaforte F 2017 Appl. Surf. Sci. 420 331Google Scholar
[11] Huang L Q, Liu B B, Zhu Q Z, Chen S H, Gao M C, Qin F W, Wang D J 2012 Appl. Phys. Lett. 100 263503Google Scholar
[12] Huang L Q, Qin F W, Li S J, Wang D J 2013 Appl. Phys. Lett. 103 033520Google Scholar
[13] Liu S B, He Z, Zheng L, Liu B, Zhang F, Dong L, Tian L X, Shen Z W, Wang J Z, Huang Y J, Fan Z C, Liu X F, Yan G G, Zhao W S, Wang L, Sun G S, Yang F H, Zeng Y P 2014 Appl. Phys. Lett. 105 122106Google Scholar
[14] Wang Z T, Liu W, Wang C Q 2016 J. Electron. Mater. 45 267Google Scholar
[15] Huang L Q, Xia M L, Gu X G 2020 J. Cryst. Growth. 531 125353Google Scholar
[16] Addamiano A 1970 US Patent 3 510 733
[17] Hamad V A, Tannous T A, Soueidan M, Gremillard L, Zaatar Y 2020 Microelectron. Reliab. 110 113694Google Scholar
[18] Zhang Y M, Guo T, Tang X Y, Yang J, He Y J, Zhang Y M 2018 J. Alloys Compd. 731 1267Google Scholar
[19] Kragh-Buetow K C, Okojie R S, Lukco D, Mohney S E 2015 Semicond. Sci. Technol. 30 105019Google Scholar
[20] Okojie R S, Lukco D 2016 J. Appl. Phys. 120 215301Google Scholar
[21] Joo S J, Baek S, Kim S C, Lee J S 2013 J. Electron. Mater. 42 2897Google Scholar
[22] Shimizu H, Shima A, Shimamoto Y, Iwamuro N 2017 Jpn. J. Appl. Phys. 56 04CR15Google Scholar
[23] Sung W, Baliga B J 2016 IEEE Electron Device Lett. 37 1605Google Scholar
[24] Hertel S, Waldmann D, Jobst J, Albert A, Albrecht M, Reshanov S, Sch Ner A, Krieger M, Weber H B 2012 Nat. Commun. 3 957Google Scholar
[25] Kumar S V, Amaral M R, Lukas K, Lars K, Giovanni A 2018 Mater. Sci. Forum 924 413Google Scholar
[26] Wu Y, Ji L F, Lin Z Y, Hong M H, Wang S C, Zhang Y Z 2019 Curr. Appl. Phys. 19 521Google Scholar
[27] Li F, Sharma Y, Walker D, Hindmarsh S, Mawby P 2016 IEEE Electron Device Lett. 37 1189Google Scholar
[28] Wu S Y, Campbell R B 1974 Solid-State Electronics 17 683
[29] Wahab Q, Ellison A, Henry A, Janzén E, Hallin C, Di Persio J, Martinez R 2000 Appl. Phys. Lett. 76 2725Google Scholar
[30] Li J L, Li Y, Wang L, Xu Y, Yang F, Han P, Ji X L 2019 Chin. Phys. B 28 027303Google Scholar
[31] Pristavu G, Brezeanu G, Badila M, Pascu R, Danila M, Godignon P 2015 Appl. Phys. Lett. 106 223704
[32] Cowley A M, Sze S M 1965 Jpn. J. Appl. Phys. 36 3212Google Scholar
[33] Tsui B Y, Cheng J C, Yen C T, Lee C Y 2017 Solid-State Electron. 133 83Google Scholar
[34] Yang Z Y, Wang Y, Li X J, Yang J Q, Shi D K, Cao F 2021 Microelectron. Eng. 239 111531
[35] Song Q W, Zhang Y M, Zhang Y M, Cheng F P, Tang X Y 2011 Chin. Phys. B 20 057301Google Scholar
[36] Lee K Y, Huang Y H 2012 IEEE Trans. Electron Devices 59 694Google Scholar
[37] Han L C, Shen H J, Liu K A, Wang Y Y, Tang Y D, Yun B, Xu H Y 2014 Chin. Phys. B 23 127302Google Scholar
[38] Dong S X, Bai Y, Tang Y D, Chen H, Tian X L, Yang C Y, Liu X Y 2018 Chin. Phys. B 27 97305Google Scholar
[39] Dhar S, Seitz O, Halls M D, Choi S, Chabal Y J, Feldman L C 2009 J. Am. Chem. Soc. 131 16808Google Scholar
[40] Hashimoto K, Doi T, Shibayama S, Nakatsuka O 2020 Jpn. J. Appl. Phys. 59 SGGD16Google Scholar
[41] Zaremba G, Adamus Z, Jung W, Kaminska E, Borysiewicz M A, Korwin-Mikke K 2012 Mater. Sci. Eng. 177 1323Google Scholar
[42] Heine V 1965 Phys. Rev. 138 1689Google Scholar
[43] Mönch W 1994 Control of Semiconductor Interfaces (Amsterdam: Elsevier) pp169−174
[44] Tung R T 2000 Phys. Rev. Lett. 84 6078Google Scholar
[45] Aboelfotoh M O, Fröjdh C, Petersson C S 2003 Phys. Rev. B 67 075312Google Scholar
[46] Gao M, Tsukimoto S, Goss S H, Tumakha S P, Onishi T, Murakami M, Brillson L J 2007 J. Electron. Mater. 36 277Google Scholar
[47] Nakayama T 2019 International Workshop on Junction Technology (IWJT) Kyoto, Japan, June 6–7, 2019 pp1–5
[48] Tsui B Y, Cheng J C, Lee L S, Lee C Y, Tsai M J 2014 Jpn. J. Appl. Phys. 53 04EP10Google Scholar
[49] Brillson L J 2007 J. Vac. Sci. Technol., A 25 943Google Scholar
[50] Roccaforte F, Bongiorno C, Via F L, Raineri V 2004 Appl. Phy. Lett. 85 6152Google Scholar
[51] Çınar K, Coşkun C, Gür E, Aydoğan Ş 2009 Nucl. Instrum. Methods Phys. Res., Sect. B 267 87Google Scholar
[52] Kozlovski V V, Lebedev A A, Levinshtein M E, Rumyantsev S L, Palmour J W 2017 Appl. Phy. Lett. 110 199
[53] Wang D, Hu R, Chen G, Tang C, Ma Y, Gong M, Yu G, Gao S, Li Y, Huang M, Yang Z 2021 Nucl. Instrum. Meth. B 491 52Google Scholar
[54] Adelmann B, Hürner A, Schlegel T, Bauer A J, Frey L, Hellmann R 2013 J. Laser Micro/Nanoeng. 8 97Google Scholar
[55] Lin Z Y, Ji L F, Wu Y, Hu L T, Yan T Y, Sun Z Y 2019 Appl. Surf. Sci. 469 68Google Scholar
[56] Zhou Z W, Zhang Z Z, He W W, Hao J Y, Sun J, Zhang F, Zheng Z D 2020 Mater. Sci. Forum 1004 712Google Scholar
[57] Gorji M S, Cheong K Y 2015 Crit. Rev. Solid State Mater. Sci. 40 197Google Scholar
[58] Kang M S, Ahn J J, Moon K S, Koo S M 2012 Nanoscale Res. Lett. 7 75Google Scholar
[59] Zheng H, Mahajan B K, Su S C, Mukherjee S, Gangopadhyay K, Gangopadhyay S 2016 Sci. Rep. 6 25234Google Scholar
[60] Gorji M S, Cheong K Y 2015 Appl. Phy. A 118 315Google Scholar
[61] Choi G, Yoon H H, Jung S, Jeon Y, Lee J Y, Bahng W, Park K 2015 Appl. Phys. Lett. 107 1480
[62] Huang L Q, Xia M L, Ma Y, Gu X G 2020 J. Appl. Phys. 127 225301Google Scholar
[63] Shi D K, Wang Y, Wu X, Yang Z Y, Li X J, Yang J Q, Cao F 2021 Solid-State Electron. 180 107992Google Scholar
[64] Triendl F, Pfusterschmied G, Berger C, Schwarz S, Artner W, Schmid U 2021 Thin Solid Films 721 138539Google Scholar
[65] Seyller T 2004 J. Phys. Condens. Matter 16 S1755Google Scholar
[66] Losurdo M, Bruno G, Brown A, Kim T H 2004 Appl. Phy. Lett. 84 4011Google Scholar
[67] Huang L Q, Gu X G 2019 Semicond. Sci. Technol. 34 015011Google Scholar
[68] Huang L Q, Gu X G 2019 J. Appl. Phys. 125 025301Google Scholar
[69] Cichoň S, Machác P, Barda B, Sofer Z 2011 Microelectron. Eng. 88 553Google Scholar
[70] Kwietniewski N, Sochacki M, Szmidt J, Guziewicz M, Kaminska E, Piotrowska A 2008 Appl. Surf. Sci. 254 8106Google Scholar
计量
- 文章访问数: 7871
- PDF下载量: 301
- 被引次数: 0