搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光烧蚀-吸收光谱测量铀同位素比实验研究

叶浩 黄印博 王琛 刘国荣 卢兴吉 曹振松 黄尧 齐刚 梅海平

引用本文:
Citation:

激光烧蚀-吸收光谱测量铀同位素比实验研究

叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平

Measurement of uranium isotope ratio by laser ablation absorption spectroscopy

Ye Hao, Huang Yin-Bo, Wang Chen, Liu Guo-Rong, Lu Xing-Ji, Cao Zhen-Song, Huang Yao, Qi Gang, Mei Hai-Ping
PDF
HTML
导出引用
  • 铀同位素比(235U/238U)高精度测量在核能安全领域具有重要的研究意义和应用价值, 本文基于高灵敏度可调谐吸收光谱技术, 结合脉冲激光烧蚀产生等离子体的样品处理方式, 实现了固体材料中235U和238U铀同位素比的高精度测量. 实验测量选择λ = 394.4884 nm/394.4930 nm (vacuum)作为235U/238U分析线, 详细研究了缓冲气体及其压力对激光烧蚀等离子体中铀原子存在时间的影响. 结果表明氦气作为缓冲气体更有利于铀原子吸收光谱测量. 实验获得了测量铀原子吸收光谱的最佳测量条件, 并测量了235U含量分别为4.95%, 4.10%, 3.00%, 1.10%和0.25%的五种样品, 获得了235U和238U的高分辨率吸收光谱信号. 不同含量样品吸收光谱测量与统计分析表明, 235U吸收信号的线性度良好, 拟合相关系数为0.989, 检测限为0.033% (3σ), 吸收光谱测量重现性优于固定波长法. 激光烧蚀结合可调谐吸收光谱技术适用于铀同位素比测量分析, 在核燃料的同位素快速分析方面有很大的应用潜力.
    High precision measurement of uranium isotope ratio (235U/238U) has important application in the field of nuclear energy safety. In this paper, based on high sensitivity tunable absorption spectroscopy technology, combined with the sample processing method of pulsed laser ablation plasma, high-precision measurement of uranium 235U/238U isotope ratio in solid material is realized. In the experimental measurement, transitions near 394.4884 nm/394.4930 nm (vacuum) are selected as the 235U/238U analytical lines. The influence of buffer gas and its pressure on the persistence time of uranium atom in laser ablated plasma are studied in detail. The experimental results show that different buffer gases have different ability to restrict the movement of particles in the plasma, which leads to different longitudinal expansion velocity of the plasma (perpendicular to the surface of the sample), and increases the persistence time of uranium atoms in the laser beam. The effect of pressure change on plasma evolution can be reduced by adding buffer gas. When helium is used as the buffer gas, the persistence time of uranium atoms in the plasma is longer, which can improve the selection space of data acquisition delay. In the ablation environment with helium, the electron number density of laser ablated plasma is relatively low, which can reduce the influence of Stark broadening effect and obtain narrower absorption lines, which is more conducive to the measurement of uranium atomic absorption spectrum. In order to reduce the influence of Doppler shift effect on absorption spectrum measurement and avoid misjudgment in spectrum analysis, it is more appropriate to carry out experimental measurement after 3μs sampling delay. Through experiments, the optimal conditions for measuring atomic absorption spectrum of uranium are obtained. Under these conditions, five different samples with 235U content of 4.95%, 4.10%, 3.00%, 1.10% and 0.25% respectively are measured, and the high-resolution absorption spectrum signals of 235U and 238U are obtained. The absorption spectra of samples with different content are measured and statistically analyzed, the 235U absorption signal has high linearity, the fitting correlation coefficient can reach 0.989, and the limit of detection is 0.033% (3σ). The stability test of absorption spectrum signal shows that the relative standard deviation of 238U, 235U and 235U / 238U signals are 2.054%, 2.152% and 0.524% respectively. The wavelength scanning mode is superior to the fixed wavelength spectrum measurement, and the influence of the energy fluctuation between different ablation pulses on the spectrum measurement is weakened by the wavelength scanning mode to a certain extent. The results show that laser ablation combined with absorption spectroscopy technology is suitable for uranium isotope ratio analysis and has great potential applications in rapid isotope analysis of nuclear fuel.
      通信作者: 曹振松, zscao@aiofm.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(A类)(批准号: XDA17010104)资助的课题
      Corresponding author: Cao Zhen-Song, zscao@aiofm.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA17010104)
    [1]

    Russo R E 1995 Appl. Spectrosc. 49 14Google Scholar

    [2]

    Chichkov B N, Momma C, Nolte S, Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [3]

    Russo R E, Mao X, Liu H, Gonzalez J, Mao S S 2002 Talanta 57 425Google Scholar

    [4]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 021301Google Scholar

    [5]

    Miziolek A W, Palleschi V, Schechter I 2006 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [6]

    Harilal S S, Lahaye N L, Phillips M C 2017 Opt. Express. 25 2312Google Scholar

    [7]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, Lahaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta, Part B 122 112Google Scholar

    [8]

    Smith C A, Martinez M A, Veirs D K, Cremers D A 2000 Spectrochim. Acta, Part B 57 929Google Scholar

    [9]

    Cremers D A, Beddingfield A, Smithwick R, Chinni R C, Jones C R, Beardsley B, Karch L 2012 Appl. Spectrosc. 66 250Google Scholar

    [10]

    Chan C Y, Choi I, Mao X, Zorba V, Lam O P, Shuh D K, Russo R E 2016 Spectrochim. Acta, Part B 122 31Google Scholar

    [11]

    Phillips M C, Brumfield B E, Lahaye N, Harilal S S, Hartig K C, Jovanovic I 2017 Scie. Rep 7 3784Google Scholar

    [12]

    Quentmeier A, Bolshov M, Niemax K 2001 Spectrochim. Acta, Part B 56 45Google Scholar

    [13]

    Liu H, Quentmeier A, Niemax K 2002 Spectrochim. Acta, Part B 57 1611Google Scholar

    [14]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Ohba H 2013 Appl. Phys. A 112 87Google Scholar

    [15]

    Miyabe M, Oba M, Jung K, Iimura H, Akaokaa K, Katoa M, Otobeb H, Khumaeni A, Wakaida I 2017 Spectrochim. Acta, Part B 134 42Google Scholar

    [16]

    Taylor N R, Phillips M C 2014 Opt. lett. 39 594Google Scholar

    [17]

    叶浩, 张骏昕, 梅海平, 黄尧, 袁子豪, 曹振松, 黄印博 2020 中国激光 47 299Google Scholar

    Ye H, Zhang J X, Mei H P, Huang Y, Yuan Z H, Cao Z S, Huang Y B 2020 Chin. J. Lasers 47 299Google Scholar

    [18]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I 2010 Appl. Phys. A 101 65Google Scholar

    [19]

    Yan P, Luo W, Zhang J, Wang L 1992 Chin. J. Lasers 5 27

    [20]

    Kramida Y, Ralchenko J, Reader N A NIST Atomic Spectra Database, National Institute of Standards and Technology http://physics.nist.gov/asd [2021-01-25]

    [21]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I, Watanabe K 2009 4th international conference on laser probing Nagoya, Japan, October 6–10, 2008 p30

    [22]

    Man B Y, Wang X T, Liu A H 1998 J. Appl. Phys. 83 3509Google Scholar

    [23]

    张树东, 陈冠英, 刘亚楠, 董晨钟 2002 原子核物理评论 19 206Google Scholar

    Zhang S D, Chen G Y, Liu Y N, Dong C Z 2002 Nucl. Phys. Rev. 19 206Google Scholar

  • 图 1  LAAS测量原理示意图

    Fig. 1.  Principle of LAAS.

    图 2  LAAS实验装置简图

    Fig. 2.  Schematic diagram of the experimental setup of LAAS.

    图 3  (a)等离子体透过率测量; (b)实验测量的235U/ 238U吸收光谱

    Fig. 3.  (a) Plasma transmittance measurement; (b) measured absorption spectrum of 235U/ 238U.

    图 4  不同环境气体下测量结果比较(Air, He, Ar, N2)

    Fig. 4.  Comparison of measurement results under different ambient gases (Air, He, Ar, N2).

    图 5  不同烧蚀环境下等离子体持续时间随样品池内压力的变化

    Fig. 5.  The persistence of ablation plasma changes with pressure.

    图 6  等离子体膨胀简易模型示意图

    Fig. 6.  Simple model of plasma expansion.

    图 7  不同采样延时的238U吸收光谱

    Fig. 7.  Absorption spectra with different sampling delays.

    图 8  不同含量样品235U/238U吸收光谱

    Fig. 8.  235U/238U absorption spectra of samples with different concentration.

    图 9  不同含量样品235U/238U吸收光谱及Voigt线型拟合光谱, 拟合曲线下部为拟合残差图

    Fig. 9.  235U/238U absorption spectra and Voigt fitting spectra of samples with different concentration, the lower part of the fitted curve is the fitted residual graph.

    图 10  235U丰度与吸收强度的定标曲线

    Fig. 10.  Calibration curve of 235U abundance and absorption intensity.

    图 11  1.10%样品235U/238U吸收光谱及Voigt线型拟合光谱

    Fig. 11.  235U/238U absorption spectrum and Voigt fitting spectrum of 1.10% sample.

    图 12  235U/238U吸收光谱信号稳定性研究

    Fig. 12.  Study on the stability of 235U/238U absorption spectrum signal.

    表 1  LAAS实验装置关键器件参数

    Table 1.  Key device parameters of LAAS experimental device.

    实验装置关键器件参数
    探测激光器线宽100 kHz
    烧蚀激光器波长1064 nm, 脉宽8 ns, 重复频率1—20 Hz, 单脉冲能量最大为200 mJ, 能量稳定性 ≤ 1%
    带通滤光片Semrock, 中心波长λ = 395 nm, 带宽Δλ = 11 nm
    陷波滤光片Thorlabs, 中心波长λ = 1064 nm, 带宽Δλ = 44 nm
    光电探测器Thorlabs, 探测带宽150 MHz
    下载: 导出CSV

    表 2  实验参数设置

    Table 2.  experimental parameter setting

    实验
    参数
    烧蚀激光
    能量/ mJ
    采样延
    时/μs
    缓冲
    气体
    压力/kPa扫描时
    间/s
    数值404He450
    下载: 导出CSV
    Baidu
  • [1]

    Russo R E 1995 Appl. Spectrosc. 49 14Google Scholar

    [2]

    Chichkov B N, Momma C, Nolte S, Alvensleben F, Tünnermann A 1996 Appl. Phys. A 63 109Google Scholar

    [3]

    Russo R E, Mao X, Liu H, Gonzalez J, Mao S S 2002 Talanta 57 425Google Scholar

    [4]

    Harilal S S, Brumfield B E, LaHaye N L, Hartig K C, Phillips M C 2018 Appl. Phys. Rev. 5 021301Google Scholar

    [5]

    Miziolek A W, Palleschi V, Schechter I 2006 Crit. Rev. Anal. Chem. 27 257Google Scholar

    [6]

    Harilal S S, Lahaye N L, Phillips M C 2017 Opt. Express. 25 2312Google Scholar

    [7]

    Skrodzki P J, Shah N P, Taylor N, Hartig K C, Lahaye N L, Brumfield B E, Jovanovic I, Phillips M C, Harilal S S 2016 Spectrochim. Acta, Part B 122 112Google Scholar

    [8]

    Smith C A, Martinez M A, Veirs D K, Cremers D A 2000 Spectrochim. Acta, Part B 57 929Google Scholar

    [9]

    Cremers D A, Beddingfield A, Smithwick R, Chinni R C, Jones C R, Beardsley B, Karch L 2012 Appl. Spectrosc. 66 250Google Scholar

    [10]

    Chan C Y, Choi I, Mao X, Zorba V, Lam O P, Shuh D K, Russo R E 2016 Spectrochim. Acta, Part B 122 31Google Scholar

    [11]

    Phillips M C, Brumfield B E, Lahaye N, Harilal S S, Hartig K C, Jovanovic I 2017 Scie. Rep 7 3784Google Scholar

    [12]

    Quentmeier A, Bolshov M, Niemax K 2001 Spectrochim. Acta, Part B 56 45Google Scholar

    [13]

    Liu H, Quentmeier A, Niemax K 2002 Spectrochim. Acta, Part B 57 1611Google Scholar

    [14]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Ohba H 2013 Appl. Phys. A 112 87Google Scholar

    [15]

    Miyabe M, Oba M, Jung K, Iimura H, Akaokaa K, Katoa M, Otobeb H, Khumaeni A, Wakaida I 2017 Spectrochim. Acta, Part B 134 42Google Scholar

    [16]

    Taylor N R, Phillips M C 2014 Opt. lett. 39 594Google Scholar

    [17]

    叶浩, 张骏昕, 梅海平, 黄尧, 袁子豪, 曹振松, 黄印博 2020 中国激光 47 299Google Scholar

    Ye H, Zhang J X, Mei H P, Huang Y, Yuan Z H, Cao Z S, Huang Y B 2020 Chin. J. Lasers 47 299Google Scholar

    [18]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I 2010 Appl. Phys. A 101 65Google Scholar

    [19]

    Yan P, Luo W, Zhang J, Wang L 1992 Chin. J. Lasers 5 27

    [20]

    Kramida Y, Ralchenko J, Reader N A NIST Atomic Spectra Database, National Institute of Standards and Technology http://physics.nist.gov/asd [2021-01-25]

    [21]

    Miyabe M, Oba M, Iimura H, Akaoka K, Maruyama Y, Wakaida I, Watanabe K 2009 4th international conference on laser probing Nagoya, Japan, October 6–10, 2008 p30

    [22]

    Man B Y, Wang X T, Liu A H 1998 J. Appl. Phys. 83 3509Google Scholar

    [23]

    张树东, 陈冠英, 刘亚楠, 董晨钟 2002 原子核物理评论 19 206Google Scholar

    Zhang S D, Chen G Y, Liu Y N, Dong C Z 2002 Nucl. Phys. Rev. 19 206Google Scholar

  • [1] 丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰. 表面烧蚀对等离子体的影响及其与电磁场相互作用.  , 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [2] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究.  , 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [3] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制.  , 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [4] 赵法刚, 张宇, 张雷, 尹王保, 董磊, 马维光, 肖连团, 贾锁堂. 基于自吸收量化的激光诱导等离子体表征方法.  , 2018, 67(16): 165201. doi: 10.7498/aps.67.20180374
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速.  , 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [7] 刘玉峰, 张连水, 和万霖, 黄宇, 杜艳君, 蓝丽娟, 丁艳军, 彭志敏. 激光诱导击穿火焰等离子体光谱研究.  , 2015, 64(4): 045202. doi: 10.7498/aps.64.045202
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究.  , 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [10] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟.  , 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [11] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究.  , 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析.  , 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究.  , 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成.  , 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究.  , 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [17] 刘少斌, 朱传喜, 袁乃昌. 等离子体光子晶体的FDTD分析.  , 2005, 54(6): 2804-2808. doi: 10.7498/aps.54.2804
    [18] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究.  , 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究.  , 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究.  , 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  5515
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-26
  • 修回日期:  2021-04-20
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map