搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析

杨雪 杨青慧 张怀武 文岐业 白飞明 钟智勇 张鼎 黄建涛

引用本文:
Citation:

面外取向的(BiTm)3(GaFe)5O12磁光单晶薄膜制备及取向机理分析

杨雪, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 张鼎, 黄建涛

Preparation and orientation mechanism analysis of (BiTm)3(GaFe)5O12 magneto-optical single crystal film with out-of-plane orientation

Yang Xue, Yang Qing-Hui, Zhang Huai-Wu, Wen Qi-Ye, Bai Fei-Ming, Zhong Zhi-Yong, Zhang Ding, Huang Jian-Tao
PDF
HTML
导出引用
  • 铋取代石榴石(Bi:YIG)薄膜具有较大的比法拉第旋角, 且可通过调控其易磁化轴垂直于薄膜表面和降低材料饱和磁化强度, 使其可工作在较小外加磁场下, 进而满足磁光器件小型化、节能化的发展需求. 本文基于对石榴石薄膜磁各向异性的理论分析, 采用液相外延(liquid-phase epitaxy, LPE)法在钆镓石榴石(gadolinium gallium garnet, GGG)基底上制备了单晶(BiTm)3(GaFe)5O12膜, 并研究了其磁各向异性性能. 研究发现, 当外延膜厚度大于1 μm时, 形状各向异性对磁各向异性产生的影响可以忽略; 随着生长温度的上升, 进入薄膜组分的Bi3+离子数量逐渐减少, 薄膜晶格常数逐渐减小, 薄膜的受力状态从压应力状态逐渐变为张应力; 相较于生长感生各向异性, 应力诱导的各向异性在磁各向异性的变化中占主导地位. (BiTm)3(GaFe)5O12膜的Verdet常数为11.8 × 104 rad/Tm@1064 nm, 是常用磁光材料TGG的3000倍; 其外加工作磁场小于200 Oe, 有利于实现磁光器件的小型化和薄膜化.
    Liquid-phase epitaxy (LPE) is one of the best techniques for the preparation of single crystal garnet films. However, the specific Faraday rotation angle of Yttrium iron garnet (YIG) is small, and its easy magnetization axis is parallel to the film surface. The YIG requires a large external saturation field, which cannot meet the development needs of magneto-optical devices. It is found that Bi-substituted YIG(Bi:YIG) film has a larger specific Faraday angle. By adjusting the easy magnetization axis of Bi: YIG perpendicular to the film surface, the saturation magnetization of Bi: YIG can be reduced, so that it can work under a small external magnetic field. This meets the development needs of miniaturization and energy saving of magneto-optical device. The saturation magnetization of garnet film can be effectively reduced by substituting Ga3+ for YIG crystal, mainly for Fe3+ at the 24d position of its tetrahedron. And the lattice constants of Gd3Ga5O12 (GGG) and YIG are 1.2383 nm and 1.2376 nm, respectively. However, the radius of Bi3+ (10.8 nm) is larger than that of Y3+ (9.0 nm), the lattice mismatch of garnet film increases with the incorporation of Bi3+. In order to neutralize the lattice expansion caused by Bi3+, Tm3+ (8.69 nm) with a radius smaller than that of Y3+ (9.0 nm) is selected. Based on the theoretical analysis of the magnetocrystalline anisotropy of garnet film, (BiTm)3(GaFe)5O12 mono-crystalline films with different growth temperatures and different thickness values are grown by LPE on GGG (111) substrates. The experimental results show that when the thickness of epitaxial film is greater than 1 μm, the influence of shape anisotropy on magnetocrystalline anisotropy can be ignored. With the increase of growth temperature, the substitution number of Bi3+ ions decreases gradually, the lattice constant of epitaxial film decreases gradually, and the lattice mismatch first decreases and then increases. Then, the state of compressive stress gradually changes into that of tensile stress. Compared with growth-induced anisotropy, the stress-induced anisotropy is dominant in the change of magnetocrystalline anisotropy. The Verdet constant of (BiTm)3(GaFe)5O12 film is 11.8 × 104 rad/Tm@1064 nm. The results show that the prepared (BiTm)3(GaFe)5O12 mono-crystalline films have great development potential in magneto-optical devices.
      通信作者: 杨青慧, yangqinghui@uestc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0300801)、国家自然科学基金(批准号: 51472046, 51272036, 51002021, 61131005)和国家重大科学仪器设备开发项目(批准号: 51827802)资助的课题
      Corresponding author: Yang Qing-Hui, yangqinghui@uestc.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan (Grant No. 2016YFA0300801), the National Natural Science Foundation of China (Grant Nos. 51472046, 51272036, 51002021, 61131005), and the National Key Scientific Instrument and Equipment Development Project (Grant No. 51827802)
    [1]

    Paroli P 1984 Thin Solid Films 114 187Google Scholar

    [2]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575Google Scholar

    [3]

    王焕元, 张鹏翔, 张绪信, 徐孝贞 1981 30 1554Google Scholar

    Wang H Y, Zhang P X, Zhang X X, Xu X Z 1981 Acta Phys. Sin. 30 1554Google Scholar

    [4]

    Hansen P, Klages C P, Witter K 1988 J. Appl. Phys. 63 2058Google Scholar

    [5]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454Google Scholar

    [6]

    Zenkov A V, Moskvin A S 2002 J. Phys. Condens. Mat. 14 6957Google Scholar

    [7]

    Hansen P, Tolksdorf W, Witter K 1984 IEEE Trans. Magn. 20 1099Google Scholar

    [8]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley & Sons Ltd) pp333−334

    [9]

    宛德福, 马兴隆 1994 磁性物理学 (第一版) (成都: 电子科技大学出版社)第150−205页

    Wan D F, Ma X L 1994 Magnetic Physics (Chengdu: University of Electronic Science and Technology Press) pp150−205 (in Chinese)

    [10]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki, M, Tokura Y 2012 Appl. Phys. Express 5 103002Google Scholar

    [11]

    Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E, Shi J 2018 APL Mater. 6 121113Google Scholar

    [12]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052Google Scholar

    [13]

    Hoekstra B, Robertson J M, Stacy W T 1977 Mater. Res. Bull. 12 53Google Scholar

    [14]

    Adachi N, Yamaguchi T, Okuda T, Machi T, Koshizuka N 2004 J. Magn. Magn. Mater. 272 2255Google Scholar

    [15]

    郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军, 马博, 吴玉娟 2018 67 117801Google Scholar

    Hao J X, Yang Q H, Zhang H W, Wen Q Y, Bai F M, Zhong Z Y, Jia L J, Ma B, Wu Y J 2018 Acta Phys. Sin. 67 117801Google Scholar

    [16]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213Google Scholar

    [17]

    Wu Y J, Yang Q H, Zhang D, Zhang Y J, Rao Y H, Wen Q Y, Syvorotka I I, Zhang H W 2020 J. Magn. Magn. Mater. 506 166689Google Scholar

    [18]

    张国营, 程勇, 张学龙, 夏天, 薛刘萍 2006 55 2601Google Scholar

    Zhang G R, Cheng Y, Zhang X L, Xia T, Xue L P 2006 Acta Phys. Sin. 55 2601Google Scholar

    [19]

    Wei J, Hu H, He H 1998 Phys. Status solidi A 168 501Google Scholar

    [20]

    Dionne G F, Allen G A 1993 J. Appl. Phys. 73 6127Google Scholar

    [21]

    郝俊祥 2018 硕士学位论文 (成都: 电子科技大学)

    Hao J X 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

  • 图 1  (a)不同生长温度下(BiTm)3(GaFe)5O12膜的XRD测试图; (b) (BiTm)3(GaFe)5O12膜的形貌相; (c) (BiTm)3(GaFe)5O12膜的HR-TEM图; (d) (BiTm)3(GaFe)5O12膜的电子衍射花样

    Fig. 1.  (a) XRD patterns of (BiTm)3(GaFe)5O12 films grown at different temperatures; (b) morphology and phase of (BiTm)3(GaFe)5O12 films; (c) HR-TEM of (BiTm)3(GaFe)5O12 film; (d) electron diffraction patterns of (BiTm)3(GaFe)5O12 films.

    图 2  不同生长温度的(BiTm)3(GaFe)5O12膜磁滞回线 (a) T = 882 ℃; (b) T = 888 ℃; (c) T = 893 ℃; (d) T = 901 ℃; (T表示生长温度)

    Fig. 2.  Hysteresis loops of (BiTm)3(GaFe)5O12 films at different growth temperatures: (a)T = 882 ℃; (b) T = 888 ℃; (c) T = 893 ℃; (d) T = 901 ℃; (T is the growth temperature).

    图 3  不同厚度的(BiTm)3(GaFe)5O12膜在不同生长温度下的$ {H}_{\rm{total}}$

    Fig. 3.  $ {H}_{\rm{total}} $ of (BiTm)3(GaFe)5O12 films with different thickness at different growth temperatures.

    图 4  不同生长温度下的(BixTm3–x)(GayFe5–y)O12膜中的x

    Fig. 4.  x in (BixTm3–x)(GayFe5–y)O12 films at different growth temperatures

    图 5  (a)不同生长温度下的(BiTm)3(GaFe)5O12膜的法拉第旋角测试回线; (b)同一入射波长下的(BiTm)3(GaFe)5O12膜和TGG的法拉第旋角测试回线

    Fig. 5.  (a) Faraday angle test loop of (BiTm)3(GaFe)5O12 films at different growth temperatures; (b) Faraday angle test loop of (BiTm)3(GaFe)5O12 film and TGG at the same incident wavelength.

    表 1  (BiTm)3(GaFe)5O12生长参数

    Table 1.  Growth parameters of (BiTm)3(GaFe)5O12

    生长温
    度/℃
    单面膜
    h/μm
    单面膜
    h/μm
    单面膜
    h/μm
    8821.654.707.37
    8885.287.24
    8931.225.207.15
    8981.195.057.40
    9011.234.927.13
    下载: 导出CSV

    表 2  (BiTm)3(GaFe)5O12膜的晶格常数($ {a}_{\mathrm{film}} $)和晶格失配($ \Delta a $)

    Table 2.  Lattice constant film ($ {a}_{\mathrm{film}} $) and lattice mismatch ($ \Delta a $) of (BiTm)3(GaFe)5O12.

    生长温度/℃$ {a}_{\mathrm{substrate}} $/Å$ {a}_{\mathrm{film}} $/Å$ \Delta a $/Å
    88212.38312.392–0.009
    89312.38312.3710.012
    89812.38312.3630.020
    90112.38312.3610.022
    下载: 导出CSV
    Baidu
  • [1]

    Paroli P 1984 Thin Solid Films 114 187Google Scholar

    [2]

    Aichele T, Lorenz A, Hergt R, Goernert P 2003 Cryst. Res. Technol. 38 575Google Scholar

    [3]

    王焕元, 张鹏翔, 张绪信, 徐孝贞 1981 30 1554Google Scholar

    Wang H Y, Zhang P X, Zhang X X, Xu X Z 1981 Acta Phys. Sin. 30 1554Google Scholar

    [4]

    Hansen P, Klages C P, Witter K 1988 J. Appl. Phys. 63 2058Google Scholar

    [5]

    Hansen P, Witter K 1985 J. Appl. Phys. 58 454Google Scholar

    [6]

    Zenkov A V, Moskvin A S 2002 J. Phys. Condens. Mat. 14 6957Google Scholar

    [7]

    Hansen P, Tolksdorf W, Witter K 1984 IEEE Trans. Magn. 20 1099Google Scholar

    [8]

    Capper P, Mauk M 2007 Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials (England: John Wiley & Sons Ltd) pp333−334

    [9]

    宛德福, 马兴隆 1994 磁性物理学 (第一版) (成都: 电子科技大学出版社)第150−205页

    Wan D F, Ma X L 1994 Magnetic Physics (Chengdu: University of Electronic Science and Technology Press) pp150−205 (in Chinese)

    [10]

    Kubota M, Tsukazaki A, Kagawa F, Shibuya K, Tokunaga Y, Kawasaki, M, Tokura Y 2012 Appl. Phys. Express 5 103002Google Scholar

    [11]

    Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E, Shi J 2018 APL Mater. 6 121113Google Scholar

    [12]

    Hansen P, Witter K, Tolksdorf W 1984 J. Appl. Phys. 55 1052Google Scholar

    [13]

    Hoekstra B, Robertson J M, Stacy W T 1977 Mater. Res. Bull. 12 53Google Scholar

    [14]

    Adachi N, Yamaguchi T, Okuda T, Machi T, Koshizuka N 2004 J. Magn. Magn. Mater. 272 2255Google Scholar

    [15]

    郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军, 马博, 吴玉娟 2018 67 117801Google Scholar

    Hao J X, Yang Q H, Zhang H W, Wen Q Y, Bai F M, Zhong Z Y, Jia L J, Ma B, Wu Y J 2018 Acta Phys. Sin. 67 117801Google Scholar

    [16]

    Matthews J W, Klokholm E 1972 Mater. Res. Bull. 7 213Google Scholar

    [17]

    Wu Y J, Yang Q H, Zhang D, Zhang Y J, Rao Y H, Wen Q Y, Syvorotka I I, Zhang H W 2020 J. Magn. Magn. Mater. 506 166689Google Scholar

    [18]

    张国营, 程勇, 张学龙, 夏天, 薛刘萍 2006 55 2601Google Scholar

    Zhang G R, Cheng Y, Zhang X L, Xia T, Xue L P 2006 Acta Phys. Sin. 55 2601Google Scholar

    [19]

    Wei J, Hu H, He H 1998 Phys. Status solidi A 168 501Google Scholar

    [20]

    Dionne G F, Allen G A 1993 J. Appl. Phys. 73 6127Google Scholar

    [21]

    郝俊祥 2018 硕士学位论文 (成都: 电子科技大学)

    Hao J X 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology) (in Chinese)

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控.  , 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 樊晓筝, 李怡莲, 吴怡, 陈俊彩, 徐国亮, 安义鹏. 二维磁性半导体笼目晶格Nb3Cl8单层的磁性及自旋电子输运性质.  , 2023, 72(24): 247503. doi: 10.7498/aps.72.20231163
    [3] 尤明慧, 李雪, 李士军, 刘国军. 晶格匹配InAs/AlSb超晶格材料的分子束外延生长研究.  , 2023, 72(1): 014203. doi: 10.7498/aps.72.20221383
    [4] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变.  , 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [5] 孟婧, 冯心薇, 邵倾蓉, 赵佳鹏, 谢亚丽, 何为, 詹清峰. 具有不同交换偏置方向的外延FeGa/IrMn双层膜的磁各向异性与磁化翻转.  , 2022, 71(12): 127501. doi: 10.7498/aps.71.20220166
    [6] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性.  , 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [7] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响.  , 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] 卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民. 氮化铁薄膜晶相合成热分析及其磁性.  , 2019, 68(11): 118101. doi: 10.7498/aps.68.20182195
    [9] 姜兴东, 管兴胤, 黄娟娟, 范小龙, 薛德胜. N+注入修复外延Fe膜面内六重磁对称.  , 2019, 68(12): 126102. doi: 10.7498/aps.68.20190131
    [10] 郝俊祥, 杨青慧, 张怀武, 文岐业, 白飞明, 钟智勇, 贾利军马博, 吴玉娟. 晶格失配应力对单晶(BiTm)3(GaFe)5O12膜磁畴结构的影响.  , 2018, 67(11): 117801. doi: 10.7498/aps.67.20180192
    [11] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究.  , 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [12] 彭红玲, 张玮, 孙利杰, 马绍栋, 石岩, 渠红伟, 张冶金, 郑婉华. 直接键合的三结太阳能电池研究.  , 2014, 63(17): 178801. doi: 10.7498/aps.63.178801
    [13] 聂帅华, 朱礼军, 潘东, 鲁军, 赵建华. 分子束外延制备的垂直易磁化MnAl薄膜结构和磁性.  , 2013, 62(17): 178103. doi: 10.7498/aps.62.178103
    [14] 陈家洛, 狄国庆. 磁各向异性热电效应对自旋相关器件的影响.  , 2012, 61(20): 207201. doi: 10.7498/aps.61.207201
    [15] 张辉, 曾德长. Tb0.3Dy0.7Fe2单晶中巨磁致伸缩的逆效应.  , 2010, 59(4): 2808-2814. doi: 10.7498/aps.59.2808
    [16] 郭玉献, 王 劼, 徐彭寿, 李红红, 蔡建旺. Co0.9Fe0.1薄膜面内元素分辨的磁各向异性.  , 2007, 56(2): 1121-1126. doi: 10.7498/aps.56.1121
    [17] 越方禹, 邵 军, 魏彦峰, 吕 翔, 黄 炜, 杨建荣, 褚君浩. 变温吸收谱研究液相外延碲镉汞浅能级.  , 2007, 56(5): 2878-2881. doi: 10.7498/aps.56.2878
    [18] 王庆学. 异质结构的应变和应力分布模型研究.  , 2005, 54(8): 3757-3763. doi: 10.7498/aps.54.3757
    [19] 李锐鹏, 王 劼, 李红红, 郭玉献, 王 锋, 胡志伟. 软x射线磁性圆二色吸收谱研究铁单晶薄膜的面内磁各向异性.  , 2005, 54(8): 3851-3855. doi: 10.7498/aps.54.3851
    [20] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响.  , 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
计量
  • 文章访问数:  5576
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 修回日期:  2021-03-08
  • 上网日期:  2021-05-15
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map