搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1907号台风“韦帕”登陆期间眼壁区的垂直电场探空观测

张廷龙 余海 陈阳 赵小平 陈洁 文中海 李哲 蒋贤玲 张茂华

引用本文:
Citation:

1907号台风“韦帕”登陆期间眼壁区的垂直电场探空观测

张廷龙, 余海, 陈阳, 赵小平, 陈洁, 文中海, 李哲, 蒋贤玲, 张茂华

Sounding observation of vertical electric field in eyewall of Typhoon Wipha (No. 1907) during landing period

Zhang Ting-Long, Yu Hai, Chen Yang, Zhao Xiao-Ping, Chen Jie, Wen Zhong-Hai, Li Zhe, Jiang Xian-Ling, Zhang Mao-Hua
PDF
HTML
导出引用
  • 2019年夏季在海南文昌获取到1907号台风“韦帕”眼壁内的一次电场探空资料, 本文利用卫星、雷达、地面电场及海南省地闪定位资料对该台风特征进行详细分析, 在此基础上, 对探空路径区域内的电场廓线以及电荷区分布进行了分析, 结果显示: 在海拔高度5.74—9.10 km之间共有4个正电荷区和3个负电荷区, 这7个电荷区所处的温度区间在–2.4— –16.7 ℃之间, 自下而上各电荷区的平均电荷密度分别为0.63, –0.33, 0.31, –1.03, 1.70, 1.57和–1.20 nC/m3, 初步分析认为最上部的两个正电荷区应该为同一个电荷区, 由此在综合考虑电荷区厚度的情况下, 发现强度最大的三个电荷区分别为最下部的正电荷区、中部的主负电荷区与上部的主正电荷区, 三者呈三极性电荷结构特征, 其次为云上边界厚度较薄的负极性屏蔽电荷层, 下部正电荷区与主负电荷区之间的两个电荷区最弱.
    In the summer of 2019, one case of electric field sounding in eyewall of No.1907 typhoon named Wipha was obtained in Wenchang, Hainan Island, China. Up to now, it has been the first case of electric field sounding results obtained in a typhoon system. In this paper, based on the observations of satellite, meteorological radar, ground electric field and cloud-to-ground flash location data of Hainan province, China, the basic characteristics of the typhoon are analyzed in detail. Owing to the limitation of cloud-to-ground flash location system, only flash activities of the typhoon before and after landing period are analyzed and the result does not show obvious features as reported by other researches. Referring to the radar reflectivity and sounding path, we confirm that the sounding penetrates through the eyewall region of the typhoon from cloud base to top. The electric field profile and the charge region distribution in the sounding path area are analyzed, and the results show that four positive and three negative charge regions exist between 5.74 and 9.10 km above sea level and the corresponding temperatures range from –2.4 to –16.7 ℃ of the seven charge regions. The mean charge densities of each charge region from bottom to top are 0.63 nC/m3, –0.33 nC/m3, 0.31 nC/m3, –1.03 nC/m3, 1.70 nC/m3, 1.57 nC/m3 and –1.20 nC/m3, respectively. According to the preliminary analysis, we consider that the two positive charge layers at the top should be in the same charge region. Under the comprehensive consideration of the thickness of charge regions, the intensities of these six charge regions are 0.33 nC/m2, –0.07 nC/m2, 0.06 nC/m2, –0.87 nC/m2, 0.73 nC/m2, and –0.18 nC/m2, respectively. We can find that there are three dominant charge regions with largest intensity and they are the lowest positive charge region, the middle main negative region, and upper main positive charge region. And these vertical distributions of the three dominant charge regions are characterized by a tripole charge structure. These results are basically consistent with some simulation results. In addition, a negative screen charge region with a shallow depth in a range of 15–20 dBZ of the upper cloud boundary can be found. Combining the popular charging mechanisms, the similarity of tripole charge structure between our sounding and normal thunderstorm are discussed, and we preliminary consider that the non-inductive charging mechanism and the inductive charging mechanism, which originate from normal convection, are also suitable for eyewall region of typhoon.
      通信作者: 张廷龙, 55962271@qq.com
    • 基金项目: 国家自然科学基金(批准号: 41775011)、灾害天气国家重点实验室开放课题(批准号: 2019LASW-B13)、海南自然科学基金创新研究团队项目(批准号: 2017CXTD014)和中国气象科学研究院基本科研业务费专项资金(批准号: 2020Z009)资助的课题
      Corresponding author: Zhang Ting-Long, 55962271@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41775011), the Open Research Program of the State Key Laboratory of Severe Weather, China (Grant No. 2019LASW-B13), the Science Fund for Creative Research Groups of the Natural Science Foundation of Hainan Province, China (Grant No. 2017CXTD014), and the Special Fund for Basic Scientific Research Operating Expenses of Chinese Academy of Meteorological Sciences, China (Grant No. 2020Z009)
    [1]

    Jorgensen D P, Zipser E J, LeMone M A 1985 J. Atmos. Sci. 42 839Google Scholar

    [2]

    Black P G, Black R A, Hallet J, Lyons W A 1986 Preprints. 23rd Conf. on Radar Meteorology and Conf. on Cloud Physics, Snowmass, CO, Amer. Meteor. Soc. J277

    [3]

    Venne M G, Lyons W A, Keen C S, Black P G, Gentry R C 1989 Preprints. 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc. 545

    [4]

    Lyons W A, Venne M G, Black P G 1989 Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc. 113

    [5]

    Lay E H, Holzworth R H, Rodger C J, Thomas J N, Pinto O, Dowden R L 2004 Geophys. Res. Lett. 31 L03102

    [6]

    Rodger C J, Brundell J B, Dowden R L 2005 Ann. Geophys. 23 277Google Scholar

    [7]

    Abarca S F, Corbosiero K L, Galarneau T J 2010 J. Geophys. Res. 115 D18206Google Scholar

    [8]

    Abarca S F, Corbosiero K L, Vollaro D 2011 Mon. Weather Rev. 139 175Google Scholar

    [9]

    Boccippio D J, Koshak W J, Blakeslee R J 2002 J. Atmos. Oceanic Technol. 19 1318Google Scholar

    [10]

    Koshak W J, Blakeslee R J, Bailey J C 2000 J. Atmos. Oceanic Technol. 17 279Google Scholar

    [11]

    Molinari J, Moore P, Idone V 1999 Mon. Weather Rev. 127 520Google Scholar

    [12]

    潘伦湘, 郄秀书 2010 大气科学 34 1088Google Scholar

    Pan L X, Qie X S 2010 Chinese J. Atmos. Sci. 34 1088Google Scholar

    [13]

    潘伦湘, 郄秀书, 刘冬霞, 王东方, 杨静 2010 中国科学: 地球科学 40 252Google Scholar

    Pan L X, Qie X S, Liu D X, Wang D H, Yang J 2010 Scientia Sinica 40 252Google Scholar

    [14]

    张文娟 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang W J 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    DeMaria M, DeMaria R T, Knaff J A, Molenar D 2012 Mon. Weather Rev. 140 1828Google Scholar

    [16]

    Molinari J, Moore P K, Idone V P, Henderson R W, Saljoughy A B 1994 J. Geophys. Res. 99 16665Google Scholar

    [17]

    Stevenson S N, Corbosiero K L, Abarca S F 2016 Mon. Weather Rev. 144 225Google Scholar

    [18]

    Lyons W A, Keen C S 1994 Mon. Weather Rev. 122 1897Google Scholar

    [19]

    Fierro A O, Leslie L, Mansell E, Straka J, MacGorman D, Ziegler C 2007 Meteorol. Atmos. Phys. 98 13Google Scholar

    [20]

    Price C, Asfur M, Yair Y 2009 Nat. Geosci. 2 329Google Scholar

    [21]

    Xu W X, Rutledge S A, Zhang W J 2017 J. Geophys. Res. 122 7047Google Scholar

    [22]

    Fierro A O, Shao X M, Hamlin T, Reisner J M, Harlin J 2011 Mon. Weather Rev. 139 1492Google Scholar

    [23]

    Samsury C E, Orvilla R E 1994 Mon. Weather Rev. 122 1887Google Scholar

    [24]

    Altaratz O, Reisin T, Levin Z 2005 J. Geophys. Res. 110 D20205Google Scholar

    [25]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [26]

    刘冬霞 2010 博士学位论文 (北京: 中国科学院研究生院)

    Liu D X 2010 Ph. D. Dissertation (Beijing: University of Chinese Academy of Science) (in Chinese)

    [27]

    黄丽萍, 管兆勇, 陈德辉, 马明 2008 大气科学 32 1341Google Scholar

    Huang L P, Guan Z Y, Chen D H, Ma M 2008 Chinese J. Atmos. Sci. 32 1341Google Scholar

    [28]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [29]

    Brooks I M, Saunders C P R, Mitzeva R P, Peck S L 1997 Atmos. Res. 43 277Google Scholar

    [30]

    Ziegler C L, MacGorman D R, Dye J E, Ray P S 1991 J. Geophys. Res. 96 12833Google Scholar

    [31]

    Mansell E R, MacGorman D R, Ziegler C L, Straka J M 2002 J. Geophys. Res. 107 ACL 2

    [32]

    Fierro A O, Reisner J M 2011 J. Atmos. Sci. 68 477Google Scholar

    [33]

    Black R A, Hallet J 1986 J. Atmos. Sci. 43 802Google Scholar

    [34]

    Xu L T, Zhang Y J, Wang F, Zheng D 2014 J. Meteorol. Res. 28 453Google Scholar

    [35]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [36]

    周诗健, 任丽新, 陈立祥 1965 地球 14 20

    Zhou S J, Ren L X, Chen L X 1965 Chinese J. Geophys. 14 20

    [37]

    Zhang W J, Zhang Y J, Zheng D, Wang F, Xu L T 2015 J. Geophys. Res. 120 4072Google Scholar

    [38]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [39]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [40]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [41]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [42]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [43]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [44]

    Stolzenburg M, Marshall T C, Krehbiel P R 2010 J. Geophys. Res. 115 D19202Google Scholar

    [45]

    Simpson G, Scrase F J 1937 Proc. R. Soc. London, Ser. A 161 309Google Scholar

    [46]

    Simpson G, Robinson G D 1941 Proc. R. Soc. London, Ser. A 177 281Google Scholar

    [47]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209

    [48]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [49]

    Byrne G J, Few A A, Weber E E 1983 Geophys. Res. Lett. 10 39Google Scholar

    [50]

    Williams E R 1989 J. Geophys. Res. 94 13151Google Scholar

    [51]

    Dye J E, Willett J C 2007 Mon. Weather Rev. 135 3362Google Scholar

    [52]

    Saunders C P R, Keith W D, Mitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [53]

    Aufdermauer A N, Johnson D A 1972 Q. J. R. Meteorolog. Soc. 98 369Google Scholar

    [54]

    徐良韬, 张义军, 王飞, 郑栋 2012 大气科学 36 1041Google Scholar

    Xu L T, Zhang Y J, Wang F, Zheng D 2012 Chinese J. Atmos. Sci. 36 1041Google Scholar

    [55]

    Pereyra R G, Avila E E, Castellano N E, Saunders C P R 2000 J. Geophys. Res. 105 20803Google Scholar

    [56]

    Ziegler C L, MacGorman D R, Dye J E, Ray P S 1991 96 12833

    [57]

    徐良韬, 张义军, 张文娟, 王飞, 郑栋 2016 气象学报 74 1002

    Xu L T, Zhang Y J, Zhang W J, Wang F, Zheng D 2016 Acta Meteorol. Sin. 74 1002

  • 图 1  雷达、地闪定位网及电场探空观测站分布 ■: 探空点; Δ: 地闪定位子站; : 雷达站和地闪定位子站

    Fig. 1.  Radar site and lightning location substation. ■: Electric field sounding site; Δ: Substations of lightning location network; : Radar site and lightning location substation.

    图 2  台风路径及强度变化情况 (a)移动路径; (b)文昌登陆后(8月1日9:00)的葵花卫星红外云图; (c)台风中心气压强度的时间变化

    Fig. 2.  Typhoon path and intensity change: (a) Path; (b) Himawari satellite infrared cloud image (9:00, 1 August); (c) the evolution of air pressure at the center of typhoon Wipha.

    图 3  2019年8月1日0:00 ~ 20:00时段1907号台风登陆海南与登陆湛江前后的地闪特征 (a)地闪活动的时间演变; (b)地闪活动的空间分布; (c)和(d)分别为04:27和14:32前后15 min内地闪与雷达回波的叠加, 黑色圆点代表地闪. 图中直线α, β, ζθ图4对应的剖面位置

    Fig. 3.  The characteristics of cloud-to-ground flashes in typhoon No.1907 before and after landing in Hainan and Zhanjiang from 0:00 to 20:00 on August 1, 2019: (a) The evolution of cloud-to-ground flash activities; (b) spatial distribution of cloud-to-ground flash activities; (c) and (d) are the superposition of the flash locations upon radar echo for 30 minutes around 04:27 and 14:32, respectively, and the black dot represents the cloud-to-ground flashes. The line α, β, ζ and θ in this figure is the location of corresponding section in Fig. 4.

    图 4  图3(c)图3(d)中沿直线α, β, ζθ的雷达回波垂直剖面(回波强度同图3色标) (a)沿直线α; (b)沿直线β; (c) 沿直线ζ; (d) 沿直线θ

    Fig. 4.  Radar echo vertical cross section of line α, β, ζ and θ in Fig.3(c) and Fig. 3(d) (The colorbar is the same as Fig. 3): (a) Line α; (b) line β; (c) line ζ; (d) line θ.

    图 5  探空时段内的雷达回波的反射率以及垂直探空路径在回波剖面上的显示 (a) 10:09时的反射率(3 km高度处); (b)图(a)中黑色方框区域的放大, 显示探空路径与回波的地面投影以及剖面切割线(线段AB); (c)探空路径在回波剖面上的投影, 图中△代表气球释放点位置

    Fig. 5.  Sounding path and the corresponding Radar echo (10:09): (a) Radar echo at height of 3 km; (b) enlarged view of the section in the square of picture (a), the line AB is the location of vertical cross section and the black curve is the horizontal projection of the sounding path; (c) superposition image of radar echo vertical cross section of line AB in the (a) and sounding path. △: Sounding site.

    图 6  2019年8月1日9:53:11—10:23:04台风眼壁区内的探空结果 (a)上升速度; (b)电晕电流; (c)电场(E)、温度(T); (d)电荷密度

    Fig. 6.  Sounding results in eyewall of No.1907 typhoon on August 1, 2019 (9:53:11–10:23:04): (a) Ascending velocity; (b) corona current; (c) E-field (E) and temperature (T); (d) charge density.

    图 7  台风地面电场监测 (a) 8月1日0:00—20:00, “TK”代表探空时段; (b)探空时段地面电场的扩展

    Fig. 7.  Evolution of surface electric field of No.1907 typhoon: (a) The time period from 0:00 to 20:00 on 1st August, “TK” stands for the sounding period; (b) enlarged view of sounding period as “TK” in Fig. (a).

    Baidu
  • [1]

    Jorgensen D P, Zipser E J, LeMone M A 1985 J. Atmos. Sci. 42 839Google Scholar

    [2]

    Black P G, Black R A, Hallet J, Lyons W A 1986 Preprints. 23rd Conf. on Radar Meteorology and Conf. on Cloud Physics, Snowmass, CO, Amer. Meteor. Soc. J277

    [3]

    Venne M G, Lyons W A, Keen C S, Black P G, Gentry R C 1989 Preprints. 24th Conf. on Radar Meteorology, Tallahassee, FL, Amer. Meteor. Soc. 545

    [4]

    Lyons W A, Venne M G, Black P G 1989 Preprints, 18th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc. 113

    [5]

    Lay E H, Holzworth R H, Rodger C J, Thomas J N, Pinto O, Dowden R L 2004 Geophys. Res. Lett. 31 L03102

    [6]

    Rodger C J, Brundell J B, Dowden R L 2005 Ann. Geophys. 23 277Google Scholar

    [7]

    Abarca S F, Corbosiero K L, Galarneau T J 2010 J. Geophys. Res. 115 D18206Google Scholar

    [8]

    Abarca S F, Corbosiero K L, Vollaro D 2011 Mon. Weather Rev. 139 175Google Scholar

    [9]

    Boccippio D J, Koshak W J, Blakeslee R J 2002 J. Atmos. Oceanic Technol. 19 1318Google Scholar

    [10]

    Koshak W J, Blakeslee R J, Bailey J C 2000 J. Atmos. Oceanic Technol. 17 279Google Scholar

    [11]

    Molinari J, Moore P, Idone V 1999 Mon. Weather Rev. 127 520Google Scholar

    [12]

    潘伦湘, 郄秀书 2010 大气科学 34 1088Google Scholar

    Pan L X, Qie X S 2010 Chinese J. Atmos. Sci. 34 1088Google Scholar

    [13]

    潘伦湘, 郄秀书, 刘冬霞, 王东方, 杨静 2010 中国科学: 地球科学 40 252Google Scholar

    Pan L X, Qie X S, Liu D X, Wang D H, Yang J 2010 Scientia Sinica 40 252Google Scholar

    [14]

    张文娟 2013 博士学位论文 (北京: 中国科学院大学)

    Zhang W J 2013 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [15]

    DeMaria M, DeMaria R T, Knaff J A, Molenar D 2012 Mon. Weather Rev. 140 1828Google Scholar

    [16]

    Molinari J, Moore P K, Idone V P, Henderson R W, Saljoughy A B 1994 J. Geophys. Res. 99 16665Google Scholar

    [17]

    Stevenson S N, Corbosiero K L, Abarca S F 2016 Mon. Weather Rev. 144 225Google Scholar

    [18]

    Lyons W A, Keen C S 1994 Mon. Weather Rev. 122 1897Google Scholar

    [19]

    Fierro A O, Leslie L, Mansell E, Straka J, MacGorman D, Ziegler C 2007 Meteorol. Atmos. Phys. 98 13Google Scholar

    [20]

    Price C, Asfur M, Yair Y 2009 Nat. Geosci. 2 329Google Scholar

    [21]

    Xu W X, Rutledge S A, Zhang W J 2017 J. Geophys. Res. 122 7047Google Scholar

    [22]

    Fierro A O, Shao X M, Hamlin T, Reisner J M, Harlin J 2011 Mon. Weather Rev. 139 1492Google Scholar

    [23]

    Samsury C E, Orvilla R E 1994 Mon. Weather Rev. 122 1887Google Scholar

    [24]

    Altaratz O, Reisin T, Levin Z 2005 J. Geophys. Res. 110 D20205Google Scholar

    [25]

    李万莉, 刘冬霞, 郄秀书, 傅慎明, 段树, 陈羿辰 2012 61 059202Google Scholar

    Li W L, Liu D X, Qie X S, Fu S M, Duan S, Chen Y C 2012 Acta Phys. Sin. 61 059202Google Scholar

    [26]

    刘冬霞 2010 博士学位论文 (北京: 中国科学院研究生院)

    Liu D X 2010 Ph. D. Dissertation (Beijing: University of Chinese Academy of Science) (in Chinese)

    [27]

    黄丽萍, 管兆勇, 陈德辉, 马明 2008 大气科学 32 1341Google Scholar

    Huang L P, Guan Z Y, Chen D H, Ma M 2008 Chinese J. Atmos. Sci. 32 1341Google Scholar

    [28]

    Saunders C P R, Peck S L 1998 J. Geophys. Res. 103 13949Google Scholar

    [29]

    Brooks I M, Saunders C P R, Mitzeva R P, Peck S L 1997 Atmos. Res. 43 277Google Scholar

    [30]

    Ziegler C L, MacGorman D R, Dye J E, Ray P S 1991 J. Geophys. Res. 96 12833Google Scholar

    [31]

    Mansell E R, MacGorman D R, Ziegler C L, Straka J M 2002 J. Geophys. Res. 107 ACL 2

    [32]

    Fierro A O, Reisner J M 2011 J. Atmos. Sci. 68 477Google Scholar

    [33]

    Black R A, Hallet J 1986 J. Atmos. Sci. 43 802Google Scholar

    [34]

    Xu L T, Zhang Y J, Wang F, Zheng D 2014 J. Meteorol. Res. 28 453Google Scholar

    [35]

    赵中阔, 郄秀书, 张广庶, 张廷龙, 张彤, 郭凤霞, 窦志强 2008 高原气象 27 881

    Zhao Z K, Qie X S, Zhang G S, Zhang T L, Zhang T, Guo F X, Dou Z Q 2008 Plateau. Meteor. 27 881

    [36]

    周诗健, 任丽新, 陈立祥 1965 地球 14 20

    Zhou S J, Ren L X, Chen L X 1965 Chinese J. Geophys. 14 20

    [37]

    Zhang W J, Zhang Y J, Zheng D, Wang F, Xu L T 2015 J. Geophys. Res. 120 4072Google Scholar

    [38]

    Zhang T L, Yu H, Zhou F C, Chen J, Zhang M H 2018 Ann. Geophys. 36 979Google Scholar

    [39]

    Marshall T C, Rust W D 1991 J. Geophys. Res. 96 22297Google Scholar

    [40]

    Winn W P, Moore C B, Holmes C R 1981 J. Geophys. Res. 86 1187Google Scholar

    [41]

    Stolzenburg M, Rust W D, Marshall T C 1998 J. Geophys. Res. 103 14097Google Scholar

    [42]

    Takahashi T 1978 J. Atmos. Sci. 35 1536Google Scholar

    [43]

    Jayaratne E R, Saunders C P R, Hallett J 1983 Q. J. R. Meteorolog. Soc. 109 609Google Scholar

    [44]

    Stolzenburg M, Marshall T C, Krehbiel P R 2010 J. Geophys. Res. 115 D19202Google Scholar

    [45]

    Simpson G, Scrase F J 1937 Proc. R. Soc. London, Ser. A 161 309Google Scholar

    [46]

    Simpson G, Robinson G D 1941 Proc. R. Soc. London, Ser. A 177 281Google Scholar

    [47]

    Marshall T C, Stolzenburg M, Krehbiel P R, Lund N R, Maggio C R 2009 J. Geophys. Res. 114 D02209

    [48]

    Zhang T L, Zhao Z K, Zhao Y, Wei C X, Yu H, Zhou F C 2015 Atmos. Res. 164-165 188Google Scholar

    [49]

    Byrne G J, Few A A, Weber E E 1983 Geophys. Res. Lett. 10 39Google Scholar

    [50]

    Williams E R 1989 J. Geophys. Res. 94 13151Google Scholar

    [51]

    Dye J E, Willett J C 2007 Mon. Weather Rev. 135 3362Google Scholar

    [52]

    Saunders C P R, Keith W D, Mitzeva R P 1991 J. Geophys. Res. 96 11007Google Scholar

    [53]

    Aufdermauer A N, Johnson D A 1972 Q. J. R. Meteorolog. Soc. 98 369Google Scholar

    [54]

    徐良韬, 张义军, 王飞, 郑栋 2012 大气科学 36 1041Google Scholar

    Xu L T, Zhang Y J, Wang F, Zheng D 2012 Chinese J. Atmos. Sci. 36 1041Google Scholar

    [55]

    Pereyra R G, Avila E E, Castellano N E, Saunders C P R 2000 J. Geophys. Res. 105 20803Google Scholar

    [56]

    Ziegler C L, MacGorman D R, Dye J E, Ray P S 1991 96 12833

    [57]

    徐良韬, 张义军, 张文娟, 王飞, 郑栋 2016 气象学报 74 1002

    Xu L T, Zhang Y J, Zhang W J, Wang F, Zheng D 2016 Acta Meteorol. Sin. 74 1002

  • [1] 徐自强, 吴晓庆, 许满满, 毕翠翠, 韩永, 邵士勇. 海洋上空折射率结构常数廓线估算.  , 2021, 70(24): 244204. doi: 10.7498/aps.70.20211201
    [2] 李启华, 陆汉城, 钟玮, 王卫超, 郭兴亮, 袁猛. 双台风条件下水汽的中尺度输送特征与收支诊断.  , 2018, 67(3): 039201. doi: 10.7498/aps.67.20170455
    [3] 焦亚音, 冉令坤, 李娜, 高守亭, 周冠博. 台风彩虹(2015)高分辨率数值模拟及涡旋Rossby波特征分析.  , 2017, 66(8): 089201. doi: 10.7498/aps.66.089201
    [4] 周威, 张阳, 张义军, 吕伟涛, 郑栋, 陈绍东, 潘汉波. 负地闪CPT放电事件的发生规律研究.  , 2014, 63(1): 019202. doi: 10.7498/aps.63.019202
    [5] 钟剑, 费建芳, 黄思训, 黄小刚, 程小平. 多参数背景场误差模型在散射计资料台风风场反演中的应用.  , 2013, 62(15): 159302. doi: 10.7498/aps.62.159302
    [6] 申茜, 张世轩, 赵俊虎, 汪栩加. 近海台风对中国东部夏季降水的贡献.  , 2013, 62(18): 189201. doi: 10.7498/aps.62.189201
    [7] 何明元, 杜华栋, 龙智勇, 黄思训. 大气廓线参数反演中基于大气可反演指数的正则化参数选择方法.  , 2012, 61(2): 024205. doi: 10.7498/aps.61.024205
    [8] 陶建军, 胡向辉. 热带低层弱涡旋中扰动的快速发展及其向中心传播的特征.  , 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [9] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验.  , 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [10] 赵小峰, 黄思训. 垂直天线阵观测信息反演大气折射率廓线.  , 2011, 60(11): 119203. doi: 10.7498/aps.60.119203
    [11] 张亮, 黄思训, 杜华栋. 散射计资料对台风海平面气压场的反演和定位的新方法研究.  , 2011, 60(11): 119202. doi: 10.7498/aps.60.119202
    [12] 张亮, 黄思训, 钟剑, 杜华栋. 基于降雨率的GMF+RAIN模型构建及在台风风场反演中的应用.  , 2010, 59(10): 7478-7490. doi: 10.7498/aps.59.7478
    [13] 杨波, 周璧华, 孟鑫. 地闪雷电电磁脉冲在大地中的分布研究.  , 2010, 59(12): 8978-8985. doi: 10.7498/aps.59.8978
    [14] 周玉淑, 冉令坤. 平流涡度方程及其在2006年Bilis台风分析中的应用.  , 2010, 59(2): 1366-1377. doi: 10.7498/aps.59.1366
    [15] 陶建军, 李朝奎. 涡旋中双臂形成的物理机制及其演变.  , 2009, 58(6): 4313-4318. doi: 10.7498/aps.58.4313
    [16] 崔红, 张书文, 王庆业. 南海对于台风伊布都响应的数值计算.  , 2009, 58(9): 6609-6615. doi: 10.7498/aps.58.6609
    [17] 周玉淑, 曹 洁, 高守亭. 有限区域风场分解方法及其在台风SAOMEI研究中的应用.  , 2008, 57(10): 6654-6665. doi: 10.7498/aps.57.6654
    [18] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响.  , 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [19] 黄思训, 蔡其发, 项 杰, 张 铭. 台风风场分解.  , 2007, 56(5): 3022-3027. doi: 10.7498/aps.56.3022
    [20] 方 健, 乔 明, 李肇基. 电荷非平衡super junction结构电场分布.  , 2006, 55(7): 3656-3663. doi: 10.7498/aps.55.3656
计量
  • 文章访问数:  4316
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-02-10
  • 上网日期:  2021-06-29
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map