搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地闪雷电电磁脉冲在大地中的分布研究

杨波 周璧华 孟鑫

引用本文:
Citation:

地闪雷电电磁脉冲在大地中的分布研究

杨波, 周璧华, 孟鑫

Distribution of cloud-to-ground lightning electromagnetic pulse fields under the ground

Yang Bo, Zhou Bi-Hua, Meng Xin
PDF
导出引用
  • 为研究地闪雷电电磁脉冲(LEMP)在大地中的分布规律,采用二维时域有限差分法计算了在雷电通道不同距离处、不同大地电参数条件下LEMP在地下不同深度的分布,并与其他高功率电磁环境在大地中的衰减情况作了对比.计算结果表明: 随距离增大, 大地中LEMP场分量迅速衰减;大地电导率较大时,电场分量衰减很大;大地电容率的变化主要影响LEMP的垂直电场分量,随大地电容率的增大,垂直电场分量明显减小;随深度的增大,电场分量衰减增大,其高频成分的衰减尤为显著,低频成分则衰减很小. 由此可知,对电线电缆实施简单的埋地处理并不能有效防止LEMP的耦合效应.
    In order to find out the distribution of lightning electromagnetic pulse (LEMP) fields under the ground, the two-dimensional finite-difference time-domain method is used to calculate LEMP under the ground. The distributions of LEMP under the ground are calculated in the cases of different distances from the lightning channel, different ground conductivities, different ground permittivities and different depths. The attenuations of lightning fields in the ground are compared with those of other high-power electromagnetic environments. The calculated results show the following points: the LEMP dramatically attenuates as the distance increases; the attenuation of the electric component is significant when the ground conductivity is reasonably high; the change of ground permittivity mainly causes the change of vertical electric field component, which decreases as the ground permittivity increases; the attenuation of the high frequency electric component increases and that of the low frequency electric component invisibly changes as the depth increases.
    • 基金项目: 国家自然科学基金 (批准号:60671007, 60971063)资助的课题.
    [1]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨 静、 郄秀书、 王建国、 赵 阳、 张其林、 袁 铁、 周筠珺、 冯桂力 2008 57 1968]

    [2]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵 阳、 郄秀书、 孔祥贞、 张广庶、 张 彤、 杨 静、 冯桂力、 张其林、 王东方 2009 58 6616]

    [3]

    Qie X S, Zhao Y, Zhang Q L, Yang J, Feng G L, Kong X Z, Zhou Y J, Zhang T L, Zhang G S, Zhang T, Wang D F, Cui H H, Zhao Z K, Wu S J 2009 Atmos. Res. 91 310

    [4]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 127

    [5]

    Master M J, Uman M A 1984 IEEE Trans. Power App. Syst. 103 2502

    [6]

    Cooray V 1992 Radio Sci. 27 529

    [7]

    Rakov V A 2001 IEEE Trans. Electromagn. Compat. 43 654

    [8]

    Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651

    [9]

    Baba Y, Rakov V A 2006 IEEE Trans. Electromagn. Compat. 48 212

    [10]

    Ren H M 2007 Ph. D. Dissertation (Nanjing: University of Science and Technology of Chinese Peoples Liberation Army) (in Chinese) [任合明 2007 博士学位论文 (南京: 解放军理工大学)]

    [11]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [12]

    Uman M A 1985 J. Geophys. Res. 90 6121

    [13]

    Wu T, King R W P 1987 J. Appl. Phys. 62 4345

    [14]

    Norton K A 1937 Proc. IEEE 25 1203

    [15]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [16]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [17]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [18]

    Yang C S, Zhou B H 2004 IEEE Trans. Electromagn. Compat. 46 133

    [19]

    Rakov V A, Uman M A 1998 IEEE Trans. Electromagn. Compat. 40 403

  • [1]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨 静、 郄秀书、 王建国、 赵 阳、 张其林、 袁 铁、 周筠珺、 冯桂力 2008 57 1968]

    [2]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵 阳、 郄秀书、 孔祥贞、 张广庶、 张 彤、 杨 静、 冯桂力、 张其林、 王东方 2009 58 6616]

    [3]

    Qie X S, Zhao Y, Zhang Q L, Yang J, Feng G L, Kong X Z, Zhou Y J, Zhang T L, Zhang G S, Zhang T, Wang D F, Cui H H, Zhao Z K, Wu S J 2009 Atmos. Res. 91 310

    [4]

    Zhang Q L, Qie X S, Wang Z H, Zhang T L, Yang J 2009 Radio Sci. 44 127

    [5]

    Master M J, Uman M A 1984 IEEE Trans. Power App. Syst. 103 2502

    [6]

    Cooray V 1992 Radio Sci. 27 529

    [7]

    Rakov V A 2001 IEEE Trans. Electromagn. Compat. 43 654

    [8]

    Pokharel R K, Ishii M, Baba Y 2003 IEEE Trans. Electromagn. Compat. 45 651

    [9]

    Baba Y, Rakov V A 2006 IEEE Trans. Electromagn. Compat. 48 212

    [10]

    Ren H M 2007 Ph. D. Dissertation (Nanjing: University of Science and Technology of Chinese Peoples Liberation Army) (in Chinese) [任合明 2007 博士学位论文 (南京: 解放军理工大学)]

    [11]

    Sommerfeld A 1909 Ann. Phys. 28 665

    [12]

    Uman M A 1985 J. Geophys. Res. 90 6121

    [13]

    Wu T, King R W P 1987 J. Appl. Phys. 62 4345

    [14]

    Norton K A 1937 Proc. IEEE 25 1203

    [15]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [16]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [17]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [18]

    Yang C S, Zhou B H 2004 IEEE Trans. Electromagn. Compat. 46 133

    [19]

    Rakov V A, Uman M A 1998 IEEE Trans. Electromagn. Compat. 40 403

  • [1] 庄杰, 韩瑞, 季振宇, 石富坤. 量化电导率模型参数多样性导致的脉冲电场消融预测的不确定性.  , 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [2] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [3] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算.  , 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [4] 李晋, 汤井田, 王玲, 肖晓, 张林成. 基于信号子空间增强和端点检测的大地电磁噪声压制.  , 2014, 63(1): 019101. doi: 10.7498/aps.63.019101
    [5] 霍光谱, 胡祥云, 方慧, 黄一凡. 层状各向异性介质大地电磁联合反演研究.  , 2012, 61(12): 129101. doi: 10.7498/aps.61.129101
    [6] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析.  , 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [7] 高韶华, 王玉霞, 王宏伟, 袁帅. KAg4I5-AgI复合体系的电导率研究.  , 2011, 60(8): 086601. doi: 10.7498/aps.60.086601
    [8] 罗 涛, 朱 伟, 石勤伟, 王晓平. 准粒子谱函数对单层石墨片最小电导率的影响.  , 2008, 57(6): 3775-3779. doi: 10.7498/aps.57.3775
    [9] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法.  , 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [10] 全荣辉, 韩建伟, 黄建国, 张振龙. 电介质材料辐射感应电导率的模型研究.  , 2007, 56(11): 6642-6647. doi: 10.7498/aps.56.6642
    [11] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响.  , 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [12] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率.  , 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [13] 魏 兵, 葛德彪. 各向异性有耗介质板介电系数和电导率的反演.  , 2005, 54(2): 648-652. doi: 10.7498/aps.54.648
    [14] 郭洪霞, 麦振洪. 电导率对电流变效应的影响.  , 1996, 45(1): 65-72. doi: 10.7498/aps.45.65
    [15] 包科达. 含椭球包体多相复合介质电导率的有效介质理论.  , 1992, 41(5): 833-840. doi: 10.7498/aps.41.833
    [16] 蒋祺, 龚昌德. 等能谷间杂质散射对无序层状系统电导率的影响.  , 1989, 38(4): 600-606. doi: 10.7498/aps.38.600
    [17] 蒋祺, 龚昌德. 无序层状系统电导率的自洽研究.  , 1989, 38(4): 593-599. doi: 10.7498/aps.38.593
    [18] 蒋祺, 龚昌德. 无序层状系统的电导率.  , 1988, 37(6): 941-949. doi: 10.7498/aps.37.941
    [19] 陈立泉, 柳俊, 王超英, 何元康, 陈竹生, 刘永平. 影响聚合物离子导体电导率的一些因素.  , 1987, 36(1): 60-66. doi: 10.7498/aps.36.60
    [20] 张昭庆. 液态金属及非晶态中的电导率——相干势近似.  , 1982, 31(3): 294-310. doi: 10.7498/aps.31.294
计量
  • 文章访问数:  8740
  • PDF下载量:  1022
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-13
  • 修回日期:  2010-05-28
  • 刊出日期:  2010-06-05

/

返回文章
返回
Baidu
map