搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

亚米级光学卫星影像邻近效应校正

王涛 周楠 易维宁 洪津 刘晓 李新 张权 刘诗雨 李照洲 李凯涛 崔文煜

引用本文:
Citation:

亚米级光学卫星影像邻近效应校正

王涛, 周楠, 易维宁, 洪津, 刘晓, 李新, 张权, 刘诗雨, 李照洲, 李凯涛, 崔文煜

Adjacency effect correction of optical satellite image with sub-meter spatial resolution

Wang Tao, Zhou Nan, Yi Wei-Ning, Hong Jin, Liu Xiao, Li Xin, Zhang Quan, Liu Shi-Yu, Li Zhao-Zhou, Li Kai-Tao, Cui Wen-Yu
PDF
HTML
导出引用
  • 邻近效应是指卫星成像过程中目标物周围自然环境反射的太阳辐射对卫星入瞳处目标像元辐亮度的贡献. 它会导致卫星图像清晰度、对比度和信息熵值降低, 并且导致表观反射率卫星影像中目标像元反射率介于其真实反射率和背景像元平均反射率之间, 严重影响定量遥感精度. 背景各像元对邻近效应的贡献权重值主要取决于大气分子光学厚度和气溶胶光学厚度, 以及目标像元与背景像元之间的空间距离、反射率差值. 目前计算该权重值的权重函数仅考虑了光学厚度和空间距离对该权重值的影响. 亚米级空间分辨率卫星影像中地物组合复杂, 相邻地物反射率差值对该权重值的影响要考虑. 本文提出的自适应大气校正算法可根据光学厚度、空间距离和反射率差值来调整背景各像元对邻近效应的贡献权重值. 利用自适应大气校正算法对GF-2全色波段卫星影像进行邻近效应校正, 结果表明自适应大气校正算法可有效去除亚米级空间分辨率光学卫星影像中的邻近效应, 提高定量遥感精度, 改善卫星影像质量.
    The adjacency effect, the contribution of the neighboring pixels to the radiance of the line of sight pixel, is caused by the Rayleigh scattering of atmospheric molecules and Mie scattering of aerosol particles. The adjacency effect will cause the reflectance of each pixel in the apparent reflectance satellite image to be between the real reflectance and the average background reflectance, reducing the accuracy of the surface reflectance inversion. Therefore, it is very important to remove the adjacency effect to improve the accuracy of retrieving the surface reflectance from satellite images. The most critical issue of the adjacency effect is to accurately calculate the weight of the contribution of each background pixel to the adjacency effect. The weight value of the contribution of each background pixel to the adjacency effect mainly depends on the spatial distance between the target pixel and the background pixel, the difference in reflectance between the target pixel and the background pixel, and the optical thickness of atmospheric molecules and the optical thickness of aerosol. At present, the commonly used weight function for calculating the weight value considers only the influence of optical thickness and spatial distance on the weight value. These weight functions are applied to a relatively uniform surface. However, when these weight functions are applied to an inhomogeneous surface, they will greatly reduce the accuracy of the adjacency effect correction. The combination of ground features in satellite images with the sub-meter spatial resolution is complex, so the influence of the difference in reflectance between the target pixel and the background pixel on the adjacency effect must be considered. The adaptive atmospheric correction algorithm proposed in this paper can adjust the weight value of the contribution of background pixels to the adjacency effect according to the spatial distance between the target pixel and the background pixel, the difference in reflectance between the target pixel and the background pixel, and the difference between the atmospheric molecules’ optical thickness and aerosol optical thickness. The adaptive atmospheric correction algorithm is used to correct the adjacency effect on GF-2 panchromatic satellite images. The results show that the adaptive atmospheric correction algorithm can effectively remove the adjacency effect in sub-meter spatial resolution optical satellite images, improve both the accuracy of quantitative study and the satellite image quality.
      通信作者: 崔文煜, cuiwenyu@aiofm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0504600)资助的课题
      Corresponding author: Cui Wen-Yu, cuiwenyu@aiofm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFB0504600)
    [1]

    Sei A 2015 Appl. Opt. 54 3748Google Scholar

    [2]

    Tanre D, Deschamps P Y, Devaux C, Herman M 1988 J. Geophys. Res. 93 15955Google Scholar

    [3]

    Ma J W, Qin D, Chun F 2006 IEEE Trans. Geosci. Remote Sens. 44 729Google Scholar

    [4]

    Quinten V, Kevin R 2018 Remote Sens. Environ. 216 586Google Scholar

    [5]

    Kaufman Y J 1988 IEEE Trans. Geosci. Remote Sens. 26 441Google Scholar

    [6]

    Malik C, Xavier L, Mireille G, Bruno L, Xavier B, Audrey M, Sylvain J, Yannick D, Veribuque S 2009 Opt. Express 27 319Google Scholar

    [7]

    Warren M A, Simis S G H, Martinez V V, Poser K, Bresciani M, Alikas K, Spyrakos E, Giardino C, Ansper A 2019 Remote Sens. Environ. 225 267Google Scholar

    [8]

    Keukelaere D L, Sterckx S, Adriaensen S, Knaeps E, Reusen I, Giardino C, Bresciani M, Hunter P, Neil C, Van D, Vaiciute D 2018 Eur. J. Remote. Sens. 51 525Google Scholar

    [9]

    Bulgarelli B, Giuseppe Z 2018 Remote Sens. Environ. 209 423Google Scholar

    [10]

    Kiselev V, Bulgarelli B, Heege T 2015 Remote Sens. Environ. 157 85Google Scholar

    [11]

    Minomura M, Kuze H, Takeuchi N 2001 Opt. Rev. 8 133Google Scholar

    [12]

    Guanter L, Richter R, Kaufmann H 2009 Int. J. Remote Sens. 30 1407Google Scholar

    [13]

    Semenov A A, Moshkov A V, Pozhidayev V N, Barducci A, Marcoionni P, Pippi I 2011 IEEE Trans. Geosci. Remote Sens. 49 2623Google Scholar

    [14]

    Svetlana Y K, Eric F V 2007 Appl. Opt. 46 4455Google Scholar

    [15]

    马晓珊, 郭晓勇, 孟新, 杨震, 彭晓东, 李立钢, 谢文明 2015 红外与毫米波学报 34 250Google Scholar

    Ma X S, Guo X Y, Meng X, Yang Z, Peng X D, Li L G, Xie W M 2015 J. Infrared Millim. Waves 34 250Google Scholar

    [16]

    Phillip N R, Kendall L C 1995 Appl. Opt. 34 4453Google Scholar

    [17]

    汤兴, 易维宁, 杜丽丽, 崔文煜 2016 光学学报 36 0228003Google Scholar

    Tang X, Yi W N, Du L, Cui W 2016 Acta Opt. Sin. 36 0228003Google Scholar

    [18]

    Benjamin T, Vincent R, Mireille H, Olivier H, Sebastien M, Gilles B 2016 Remote Sens. 8 696Google Scholar

    [19]

    Richter R 1996 Comput. Geosci. 22 785Google Scholar

    [20]

    Simone G, Pedersen M, Hardeberg J Y 2012 Vis. Commun. Image R. 23 491Google Scholar

    [21]

    Jesús A P, Federico V G, Martin M S, Carlos M D, Eduardo S E, Alfredo P A 2018 Remote Sens. 10 219Google Scholar

    [22]

    Xie Y, Li Z, Li D, Xu H, Li K T 2015 Remote Sens. 7 9928Google Scholar

  • 图 1  不同目标像元反射率与背景像元反射率组合情况下的${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$

    Fig. 1.  The value of ${L_{{\rm{background}}}}/{L_{{\rm{target}}}}$ for different combinations of target reflectance and background reflectance.

    图 2  自适应大气校正算法(adaptive-AC)流程图

    Fig. 2.  Flowchart of the adaptive-AC.

    图 3  GF-2 全色及可见近红外波段相对光谱辐亮度响应

    Fig. 3.  Relative spectral radiance response (RSRR) for GF-2 VNIR bands.

    图 4  GF-2全色波段卫星图像 (a) 表观反射率图; (b) 基于自适应大气校正算法校正后的卫星影像(记为“adaptive-AC地表真实反射率图”); (c)基于6S模型中的大气校正算法校正后的卫星影像(记为“6S-AC地表真实反射率图”); (d)基于MODTRAN模型中的大气校正算法校正后的卫星影像(记为“MODTRAN-AC地表真实反射率图”)

    Fig. 4.  GF-2 panchromatic band image: (a) Apparent reflectance image; (b) atmospheric correction result based on adaptive-AC (denoted as “adaptive-AC real surface reflectance image”); (c) atmospheric correction result based on the atmospheric algorithm in 6S model (denoted as “6S-AC real surface reflectance image”); (d) atmospheric correction result based on the atmospheric algorithm in MODTRAN model (denoted as “MODTRAN-AC real surface reflectance image”).

    表 1  大气参数和观测几何条件

    Table 1.  Atmospheric parameters and observed geometric conditions.

    成像时间2020-03-20 11:28:33
    太阳天顶角/(°)$ {37.8709}^{} $
    太阳方位角/(°) $ {152.372}^{} $
    观测天顶角/(°)$ {12.503}^{} $
    观测方位角/(°)$ {97.6684}^{} $
    气溶胶类型大陆型气溶胶
    气溶胶光学厚度 (550 nm)0.4018
    大气模式中纬度夏季
    波段0.4—0.9 μm
    下载: 导出CSV

    表 2  图4中各图像的清晰度、对比度、熵值

    Table 2.  Values of the ${\rm{CLAR}}$, ${\rm{CONT}}$ and ${\rm{ENTR}}$ for each image in Fig.4.

    卫星图像${\rm{CLAR}}$${\rm{CONT}}$${\rm{ENTR}}$
    表观反射率图2184.18560.67154.9749
    adaptive-AC地表
    真实反射率图
    3869.64620.88275.7793
    6S-AC地表真实反射率图2883.87000.76145.3759
    MODTRAN-AC地表
    真实反射率图
    3925.83580.80095.8047
    下载: 导出CSV

    表 3  图4中各矩形区域的平均反射率

    Table 3.  Average surface reflectance in the selected area of the four images in Fig. 4.

    反射率矩形区域1矩形区域2矩形区域3
    地面实测0.36050.06810.4756
    表观反射率图0.25890.11550.3204
    adaptive-AC地表
    真实反射率图
    0.33330.08050.4406
    6S-AC地表真实
    反射率图
    0.29530.10600.3741
    MODTRAN-AC
    地表真实反射率图
    0.37880.12200.4880
    下载: 导出CSV
    Baidu
  • [1]

    Sei A 2015 Appl. Opt. 54 3748Google Scholar

    [2]

    Tanre D, Deschamps P Y, Devaux C, Herman M 1988 J. Geophys. Res. 93 15955Google Scholar

    [3]

    Ma J W, Qin D, Chun F 2006 IEEE Trans. Geosci. Remote Sens. 44 729Google Scholar

    [4]

    Quinten V, Kevin R 2018 Remote Sens. Environ. 216 586Google Scholar

    [5]

    Kaufman Y J 1988 IEEE Trans. Geosci. Remote Sens. 26 441Google Scholar

    [6]

    Malik C, Xavier L, Mireille G, Bruno L, Xavier B, Audrey M, Sylvain J, Yannick D, Veribuque S 2009 Opt. Express 27 319Google Scholar

    [7]

    Warren M A, Simis S G H, Martinez V V, Poser K, Bresciani M, Alikas K, Spyrakos E, Giardino C, Ansper A 2019 Remote Sens. Environ. 225 267Google Scholar

    [8]

    Keukelaere D L, Sterckx S, Adriaensen S, Knaeps E, Reusen I, Giardino C, Bresciani M, Hunter P, Neil C, Van D, Vaiciute D 2018 Eur. J. Remote. Sens. 51 525Google Scholar

    [9]

    Bulgarelli B, Giuseppe Z 2018 Remote Sens. Environ. 209 423Google Scholar

    [10]

    Kiselev V, Bulgarelli B, Heege T 2015 Remote Sens. Environ. 157 85Google Scholar

    [11]

    Minomura M, Kuze H, Takeuchi N 2001 Opt. Rev. 8 133Google Scholar

    [12]

    Guanter L, Richter R, Kaufmann H 2009 Int. J. Remote Sens. 30 1407Google Scholar

    [13]

    Semenov A A, Moshkov A V, Pozhidayev V N, Barducci A, Marcoionni P, Pippi I 2011 IEEE Trans. Geosci. Remote Sens. 49 2623Google Scholar

    [14]

    Svetlana Y K, Eric F V 2007 Appl. Opt. 46 4455Google Scholar

    [15]

    马晓珊, 郭晓勇, 孟新, 杨震, 彭晓东, 李立钢, 谢文明 2015 红外与毫米波学报 34 250Google Scholar

    Ma X S, Guo X Y, Meng X, Yang Z, Peng X D, Li L G, Xie W M 2015 J. Infrared Millim. Waves 34 250Google Scholar

    [16]

    Phillip N R, Kendall L C 1995 Appl. Opt. 34 4453Google Scholar

    [17]

    汤兴, 易维宁, 杜丽丽, 崔文煜 2016 光学学报 36 0228003Google Scholar

    Tang X, Yi W N, Du L, Cui W 2016 Acta Opt. Sin. 36 0228003Google Scholar

    [18]

    Benjamin T, Vincent R, Mireille H, Olivier H, Sebastien M, Gilles B 2016 Remote Sens. 8 696Google Scholar

    [19]

    Richter R 1996 Comput. Geosci. 22 785Google Scholar

    [20]

    Simone G, Pedersen M, Hardeberg J Y 2012 Vis. Commun. Image R. 23 491Google Scholar

    [21]

    Jesús A P, Federico V G, Martin M S, Carlos M D, Eduardo S E, Alfredo P A 2018 Remote Sens. 10 219Google Scholar

    [22]

    Xie Y, Li Z, Li D, Xu H, Li K T 2015 Remote Sens. 7 9928Google Scholar

  • [1] 侯佳佳, 张大成, 冯中琦, 朱江峰. 基于温度迭代校正自吸收效应的激光诱导击穿光谱定量分析方法.  , 2024, 73(5): 054205. doi: 10.7498/aps.73.20231541
    [2] 张海粟, 乔玲玲, 程亚. 空气激光:面向大气遥感的高分辨光谱技术.  , 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221923
    [3] 张海粟, 乔玲玲, 程亚. 空气激光: 面向大气遥感的高分辨光谱技术.  , 2022, 71(23): 233401. doi: 10.7498/aps.71.20221913
    [4] 王巨丰, 田明阳, 杜宏健, 马传许, 王兵. PbBi3低温合金薄膜的制备和超导性质.  , 2022, 71(12): 127401. doi: 10.7498/aps.71.20220050
    [5] 田明阳, 王巨丰, 杜宏健, 马传许, 王兵. 一种铅铋合金薄膜低温相的结构及超导物性表征.  , 2021, 70(17): 170703. doi: 10.7498/aps.70.20210482
    [6] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析.  , 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [7] 闫欢欢, 李晓静, 张兴赢, 王维和, 陈良富, 张美根, 徐晋. 大气SO2柱总量遥感反演算法比较分析及验证.  , 2016, 65(8): 084204. doi: 10.7498/aps.65.084204
    [8] 刘章文, 李正东, 周志强, 袁学文. 基于模糊控制的自适应光学校正技术.  , 2016, 65(1): 014206. doi: 10.7498/aps.65.014206
    [9] 李传新, 司福祺, 周海金, 刘文清, 胡仁志, 刘凤垒. 基于普通汞灯光源的横向塞曼效应背景校正大气汞检测方法研究.  , 2014, 63(7): 074202. doi: 10.7498/aps.63.074202
    [10] 郭友明, 马晓燠, 饶长辉. 自适应光学系统倾斜校正回路的最优闭环带宽.  , 2014, 63(6): 069502. doi: 10.7498/aps.63.069502
    [11] 丁玥, 沈洁, 庞远, 刘广同, 樊洁, 姬忠庆, 杨昌黎, 吕力. Bi2Te3拓扑绝缘体表面颗粒化铅膜诱导的超导邻近效应.  , 2013, 62(16): 167401. doi: 10.7498/aps.62.167401
    [12] 谢东海, 顾行发, 程天海, 余涛, 李正强, 陈兴峰, 陈好, 郭婧. 基于多角度偏振相机的城市典型地物双向反射特性研究.  , 2012, 61(7): 077801. doi: 10.7498/aps.61.077801
    [13] 程天海, 顾行发, 余涛, 陈良富, 田国良. 地表双向反射对天基矢量辐射探测的影响分析.  , 2009, 58(10): 7368-7375. doi: 10.7498/aps.58.7368
    [14] 郁华玲. 超导邻近效应在正常金属层中引起的反常小能隙现象.  , 2007, 56(10): 6038-6044. doi: 10.7498/aps.56.6038
    [15] 孙 霞, 尤四方, 肖 沛, 丁泽军. 电子束光刻的邻近效应及其模拟.  , 2006, 55(1): 148-154. doi: 10.7498/aps.55.148
    [16] 张光寅, 宋 峰, 冯 衍, 许京军. 可自适应补偿热透镜效应的固体激光谐振腔.  , 2000, 49(8): 1495-1498. doi: 10.7498/aps.49.1495
    [17] 王超群, N.J.Park, H.J.Bunge. X射线定量相分析中的织构校正.  , 1995, 44(1): 98-104. doi: 10.7498/aps.44.98
    [18] 汤蕙, 章立源. 具有—U中心的非简单金属与BCS超导体的邻近效应(Ⅱ).  , 1985, 34(1): 97-104. doi: 10.7498/aps.34.97
    [19] 章立源. 具有-U中心的非简单金属与BCS超导体的邻近效应(Ⅰ).  , 1983, 32(11): 1435-1442. doi: 10.7498/aps.32.1435
    [20] 蔡学榆, 尹道乐. 多层膜超导体的邻近效应.  , 1981, 30(5): 700-704. doi: 10.7498/aps.30.700
计量
  • 文章访问数:  5320
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-22
  • 修回日期:  2021-02-18
  • 上网日期:  2021-06-28
  • 刊出日期:  2021-07-05

/

返回文章
返回
Baidu
map