搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石氮-空位色心的原子自旋声子耦合机理

沈翔 赵立业 黄璞 孔熙 季鲁敏

引用本文:
Citation:

金刚石氮-空位色心的原子自旋声子耦合机理

沈翔, 赵立业, 黄璞, 孔熙, 季鲁敏

Atomic spin and phonon coupling mechanism of nitrogen-vacancy center

Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min
PDF
HTML
导出引用
  • 金刚石氮-空位色心结构因在量子精密测量领域的高灵敏度优势而备受关注. 本文引入耦合声子场对氮-空位色心原子自旋进行共振调控, 以提高氮-空位色心的自旋跃迁效率. 首先, 基于波函数和晶格的点阵位移矢量关系, 分析了声子与晶格能量交互作用, 研究了基于声子共振调控的氮-空位色心的自旋跃迁机理, 建立了基于应变诱导的能量转移声子-自旋交互耦合激发模型. 其次, 基于氮-空位色心晶格振动理论, 引入满足布洛赫定理的系数矩阵, 建立了不同轴向氮-空位色心第一布里渊区特征区域的声子谱模型. 同时, 基于德拜模型, 考虑热膨胀效应, 解析该声子共振系统的声子热平衡性质, 并对其比热模型进行研究. 最后, 基于分子动力学仿真软件CASTEP和密度泛函理论进行第一性原理研究, 构建了声子模式下不同轴向氮-空位色心的结构优化模型, 并分析了其结构特性、声子特性和热力学特性. 研究结果表明, 系统声子模式的演化依赖于氮-空位的占位, 声子模式强化伴随着热力学熵的降低. 含氮-空位色心金刚石的共价键较纯净无缺陷金刚石更弱, 热力学性质更不稳定. 含氮-空位色心金刚石的声子主共振频段处于THz量级, 次共振频率约为[800,1200] MHz. 根据次共振频段设计叉指宽度为1.5 μm的声表面波共振机构, 其中心频率约为930 MHz. 在该声子共振调控参数条件下, 声子共振调控方法可有效增大氮-空位色心的自旋跃迁概率, 实现氮-空位色心原子自旋操控效率的提高.
    The nitrogen-vacancy center structure of diamond has attracted widespread attention due to its high sensitivity in quantum precision measurement. In this paper, a coupled phonon field is used to resonantly regulate the atomic spins of the nitrogen-vacancy center for improving the spin transition efficiency. Firstly, the interaction between phonons and lattice energy is analyzed based on the relationship between the wave function and the lattice displacement vector. The spin transition mechanism is investigated based on phonon resonance regulation, and the strain-induced energy transferable phonon-spin interaction coupling excitation model is established. Secondly, the coefficient matrix satisfying Bloch’s theorem is adopted to develop the phonon spectrum model of the first Brillouin zone characteristic region for different axial nitrogen-vacancy centers. Considering the thermal expansion, the thermal balance properties of phonon resonance system are analyzed and its specific heat model is studied based on the Debye model. Finally, the structure optimization model of different axial nitrogen-vacancy centers under the phonon model is built up based on the molecular dynamics simulation software CASTEP and density functional theory for first-principles research. The structural characteristics, phonon characteristics, and thermodynamic properties of nitrogen-vacancy centers are analyzed. The research results show that the evolution of phonon mode depends on the occupation of the nitrogen-vacancy center. A decrease in thermodynamic entropy accompanies the strengthening of the phonon mode. The covalent bond of diamond with nitrogen-vacancy center is weaker than that of a defect-free diamond. The thermodynamic properties of a defect-free diamond are more unstable. The primary phonon resonance frequency of diamond with nitrogen-vacancy centers are on the order of THz, and the secondary phonon resonance frequency is about in a range of 800 and 1200 MHz. A surface acoustic wave resonance mechanism with an interdigital width of 1.5 μm is designed according to the secondary resonance frequency, and its center frequency is about 930 MHz. The phonon resonance control method can effectively increase the spin transition probability of nitrogen-vacancy center under suitable phonon resonance control parameters, and thus realizing the increase of atomic spin manipulation efficiency.
      通信作者: 赵立业, liyezhao@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62071118)资助的课题
      Corresponding author: Zhao Li-Ye, liyezhao@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62071118)
    [1]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [2]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar

    [3]

    Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar

    [4]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [7]

    Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 16 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar

    [9]

    Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [10]

    Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar

    [11]

    Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar

    [12]

    Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar

    [13]

    Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar

    [14]

    Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar

    [15]

    Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar

    [16]

    Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar

    [17]

    Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar

    [18]

    Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar

    [19]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [20]

    Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar

    [21]

    Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar

    [22]

    Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar

    [23]

    Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar

    [24]

    Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar

    [25]

    Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar

    [26]

    Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar

    [27]

    Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar

    [28]

    McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar

    [29]

    Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar

    [30]

    Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar

    [31]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [32]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [33]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [34]

    Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar

    [35]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [36]

    MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar

    [37]

    Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar

    [38]

    MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar

    [39]

    Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar

    [40]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar

    [41]

    Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar

    [42]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar

    [43]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar

    [44]

    Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar

    [45]

    Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar

    [46]

    Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar

    [47]

    成泰民, 鲜于泽 2006 55 4828Google Scholar

    Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar

    [48]

    Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar

    [49]

    玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页

    Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)

    [50]

    蒋文灿, 陈华, 张伟斌 2016 12 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar

    [51]

    Fincham D 1994 Mol. Simul. 13 1Google Scholar

  • 图 1  NV色心几何结构和自旋跃迁性质 (a)几何结构; (b)能级结构及自旋跃迁性质

    Fig. 1.  Structures and spin transition properties of a negatively charged NV center: (a) Geometric structure; (b) energy level structure and spin transition properties.

    图 2  NV色心量子化轴示意图

    Fig. 2.  Schematic diagram of quantization axis for NV center

    图 3  金刚石中4个轴向NV色心分布及NV坐标系

    Fig. 3.  Four axial NV center distributions and their NV coordinate systems in diamond.

    图 4  (a)声子场共振结构示意图; (b)声子场共振调控机理示意图[48]

    Fig. 4.  (a) Schematic diagram of phonon field resonance structure; (b) mechanism diagram of phonon field resonance control.

    图 5  金刚石第一布里渊区特征 (a)不含NV色心; (b)含NV色心

    Fig. 5.  Characteristics of first Brillouin zone of diamond: (a) Without NV center; (b) contain NV center.

    图 6  不同轴向NV色心金刚石的晶格能优化特征

    Fig. 6.  Lattice energy optimization characteristics for the diamond with NV centers of different axes.

    图 7  不同轴向NV色心金刚石的带隙特征 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向

    Fig. 7.  Band gap characteristics for the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].

    图 8  不同轴向NV色心金刚石的态密度曲线

    Fig. 8.  State density curves of the diamond with NV centers of different axes.

    图 9  不同轴向NV色心金刚石的声子谱 (a)无NV色心; (b) [1, 1, 1]轴向; (c) [1, –1, –1]轴向; (d) [–1, 1, –1]轴向; (e) [–1, –1, 1]轴向

    Fig. 9.  Phonon spectrum curves of the diamond with NV centers of different axes: (a) Without NV center; (b) axis direction of [1, 1, 1]; (c) axis direction of [1, –1, –1]; (d) axis direction of [–1, 1, –1]; (e) axis direction of [–1, –1, 1].

    图 10  不同轴向NV色心金刚石的声子态密度曲线

    Fig. 10.  Phonon state density curves of the diamond with NV centers of different axes.

    图 11  不同轴向NV色心金刚石的Debye温度特征 (a)特征曲线; (b)特征值

    Fig. 11.  Debye temperture characteristics of the diamond with NV centers of different axes: (a) Characteristic curves; (b) characteristic values.

    图 12  不同轴向NV色心金刚石的声子热力学曲线 (a)热力学晗; (b)热力学熵; (c)热力学自由能

    Fig. 12.  Debye temperture curves of the diamond with NV centers of different axes: (a) Enthalpy; (b) entropy; (c) free Energy.

    图 13  不同轴向NV色心金刚石的热容特性 (a)热容曲线; (b)热容值

    Fig. 13.  Heat capacity characteristics of the diamond with NV centers of different axes: (a) Heat capacity curves; (b) heat capacity values.

    表 1  不同轴向NV色心的晶格动力学矩阵元的不对称关系

    Table 1.  Asymmetrical relations of lattice dynamics matrix elements for NV centers of different axes.

    NV色心轴向晶格动力学矩阵元不对称关系 NV色心轴向晶格动力学矩阵元不对称关系
    无NV色心$\left\{ \begin{aligned}&{ {D_{xy} }\left( {{q} } \right) = {D_{yx} }\left( {{q} } \right)}\\&{ {D_{yz} }\left( {{q} } \right) = {D_{zy} }\left( {{q} } \right)}\\&{ {D_{xz} }\left( {{q} } \right) = {D_{zx} }\left( {{q} } \right)}\end{aligned} \right.$ [–1, 1, –1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[ - 1, 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    [1, 1, 1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = {k_{[1, 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$ [–1, –1, 1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = {k_{[ - 1, - 1, 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[ - 1, - 1, 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    [1, –1, –1]轴向$\left\{ {\begin{aligned}&{{D_{xy}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{yx}}\left( {{q}} \right)}\\&{{D_{yz}}\left( {{q}} \right) = {k_{[1, - 1, - 1]}}{D_{zy}}\left( {{q}} \right)}\\&{{D_{xz}}\left( {{q}} \right) = - {k_{[1, - 1, - 1]}}{D_{zx}}\left( {{q}} \right)}\end{aligned}} \right.$
    下载: 导出CSV

    表 2  [1, 1, 1]轴向NV色心金刚石布里渊区特征线的声子谱解析结果

    Table 2.  Phonon spectrum analysis results at the characteristic line of the Brillouin zone in the diamond with the NV center of [1, 1, 1] axis.

    特征线声子谱波矢条件声子谱函数极化向量
    Λ 线$ {{q}}_{{x}}={{q}}_{y}={{q}}_{{z}}={q} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } + {2}{B} _ {[1, 1, 1]} ^ {\varLambda }} \\ &{\omega }_{2}=\sqrt {{ {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } } \\ &{\omega }_{3}=\sqrt{ { {A} }_ {[1, 1, 1]} ^ {\varLambda } {-}{ {B} }_ {[1, 1, 1]} ^ {\varLambda } }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({-}\frac{1}{\sqrt{{6}}}{, -}\frac{1}{\sqrt{{6}}}, \frac{\sqrt{{6}}}{3}\right)\end{aligned}\right. $
    $ \varDelta $线
    (ΓF 线)
    (ZQ 线)
    $ {{q}}_{{x}}={{q}}_{{z}}{=0} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{[1, 1, 1]}^{\varDelta }+{ {B} }_{[1, 1, 1]}^{\varDelta} }\\ &{\omega }_{2}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta } }\\ &{\omega }_{3}=\sqrt{ { {B} }_{[1, 1, 1]}^{\varDelta} }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 1, 0}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
    Σ 线${ {q} }_{ {x} }={ {q} }_{y}={q},$
    $ {{q}}_{{z}}= 0 $
    $\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_{ [1, 1, 1] }^{\varSigma }+{ {B} }_ {[1, 1, 1]} ^ {\varSigma } }\\ &{\omega }_{2}=\sqrt{ { {A} }_{[1, 1, 1]} ^ {\varSigma } {-}{ {B} }_{[1, 1, 1]} ^ {\varSigma } } \\ &{\omega }_{3}=\sqrt{ { {C} }_ {[1, 1, 1]} ^{\varSigma } } \end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{2}}=\left({-}\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}{, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 0, 1}\right)\end{aligned}\right. $
    M 线
    (ΓZ 线)
    (FQ 线)
    $ {{q}}_{{x}}={{q}}_{y}={0} $$\left\{\begin{aligned}&{\omega }_{1}=\sqrt{ { {A} }_ {[1, 1, 1]} ^{ {M} }+{ {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{2}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\\ &{\omega }_{3}=\sqrt{ { {B} }_ {[1, 1, 1]} ^{ {M} } }\end{aligned}\right.$$ \left\{\begin{aligned}&{{e}}_{{q}{1}}=\left({0, 0, 1}\right)\\ &{{e}}_{{q}{2}}=\left({1, 0, 0}\right)\\ &{{e}}_{{q}{3}}=\left({0, 1, 0}\right)\end{aligned}\right. $
    注: $A_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_y}a/2} \right)} \right]$, $B_{[1, 1, 1]}^\varDelta = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( { {q_y}a} \right)} \right]$,
    $A_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\{ 3 - 2\cos \left( {qa/2} \right) - \cos \left( {qa} \right) + \left[ {2\eta - 2\eta \cos \left( {qa} \right)} \right]\}$, $B_{[1, 1, 1]}^\varSigma = \left( { {f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {1 - \cos \left( {qa} \right)} \right]$,
    $C_{[1, 1, 1]}^\varSigma = \left( {2{f_1}/3{k_{[1, 1, 1]} }M_l^\alpha } \right)\left[ {2 - 2\cos \left( {qa/2} \right)} \right]$, $A_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {2 - 2\cos \left( {{q_z}a/2} \right)} \right]$,
    $B_{[1, 1, 1]}^M = \left( {2{f_1}/3{k_{[1, 1, 1]}}M_l^\alpha } \right)\left[ {\eta - \eta \cos \left( {{q_z}a} \right)} \right]$.
    下载: 导出CSV

    表 3  [1, 1, 1]轴向NV色心金刚石的声子热平衡温度解析结果

    Table 3.  Phonon thermal equilibrium temperature analysis results of the diamond with the NV center of [1, 1, 1] axis.

    声子极化方向声子热平衡温度声子极化方向声子热平衡温度
    $ {\varLambda } $线方向${T}_{ {\varLambda } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varLambda } }+{ {2}{B} }_{ {[1, 1, 1]} }^{ {\varLambda } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$$ {\varSigma } $线方向${T}_{ {\varSigma } }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {\varSigma } }+{ {B} }_{ {[1, 1, 1]} }^{ {\varSigma } } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
    $ \varDelta $线方向${T}_{\varDelta }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{\varDelta }+{ {B} }_{ {[1, 1, 1]} }^{\varDelta } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$M 线方向${T}_{ {M} }=\dfrac{ {-}{\hbar }\sqrt{ { {A} }_{ {[1, 1, 1]} }^{ {M} }+{ {B} }_{ {[1, 1, 1]} }^{ {M} } } }{ {k}_{\rm{B} }{\ln}\left(\frac{\left\langle { {n} } \right\rangle}{ {1+}\left\langle { {n} } \right\rangle}\right)}$
    注: 参数$ {{A}}_{{[1, 1, 1]}}^{{\varLambda }}, {{B}}_{{[1, 1, 1]}}^{{\varLambda }}, {{A}}_{{[1, 1, 1]}}^{\varDelta }, {{B}}_{{[1, 1, 1]}}^{\varDelta } $, $ {{A}}_{{[1, 1, 1]}}^{{\varSigma }}, {{B}}_{{[1, 1, 1]}}^{{\varSigma }}, {{A}}_{{[1, 1, 1]}}^{{M}} $和$ {{B}}_{{[1, 1, 1]}}^{{M}} $同表2.
    下载: 导出CSV
    Baidu
  • [1]

    Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153Google Scholar

    [2]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat.Commun. 6 8748Google Scholar

    [3]

    Xu K B, Xie T Y, Li Z K, et al. 2017 Phys. Rev. Lett. 118 130514Google Scholar

    [4]

    Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar

    [5]

    Schirhagl R, Chang K, Loretz M, Degen C L 2014 Annu. Rev. Phys. Chem. 65 83Google Scholar

    [6]

    Wrachtrup J, Finkler A 2016 J. Magn. Reson. 269 225Google Scholar

    [7]

    Fortman B, Takahashi S 2019 J. Phys. Chem. A 123 6350Google Scholar

    [8]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 16 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 16 167601Google Scholar

    [9]

    Gustafsson M V, Aref T, Kockum A F, Ekstrom M K, Johansson G, Delsing P 2014 Science 346 207Google Scholar

    [10]

    Bayrakci S P, Keller T, Habicht K, Keimer B 2006 Science 312 5782Google Scholar

    [11]

    Yurtseven H, Akay O 2020 J.Mol.Struc. 1217 128451Google Scholar

    [12]

    Schuetz M J A, Kessler E M, Giedke G, Van dersypen L M K, Lukin M D, Cirac J I 2015 Phys. Rev. X 5 031031Google Scholar

    [13]

    Kervinen M, Rissanen I, Sillanpää M 2018 Phys. Rev. B 97 205443Google Scholar

    [14]

    Moores B A, Sletten L R, Viennot J J, Lehnert K W 2018 Phys. Rev. Lett. 120 227701Google Scholar

    [15]

    Han X, Zou C L, Tang H X 2016 Phys. Rev. Lett. 117 123603Google Scholar

    [16]

    Noguchi A, Yamazaki R, Tabuchi Y, Nakamura Y 2017 Phys. Rev. Lett. 119 180505Google Scholar

    [17]

    Kepesidis K V, Bennett S D, Portolan S, Lukin M D, Rabl P 2013 Phys. Rev. B 88 064105Google Scholar

    [18]

    Pirkkalainen J M, Cho S U, Li J, Paraoanu G S, Hakonen P J, Sillanpaa M A 2013 Nature 494 211Google Scholar

    [19]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697Google Scholar

    [20]

    Arute F, Arya K, et al. 2019 Nature 574 505Google Scholar

    [21]

    Soykal O O, Ruskov R, Tahan C 2011 Phys. Rev. Lett. 107 235502Google Scholar

    [22]

    Albrecht A, Retzker A, Jelezko F, Plenio M B 2013 New J. Phys. 15 083014Google Scholar

    [23]

    Bennett S D, Yao N Y, Otterbach J, Zoller P, Rabl P, Lukin M D 2013 Phys. Rev. Lett. 110 156402Google Scholar

    [24]

    Wang H, Burkard G 2015 Phys. Rev. B 92 195432Google Scholar

    [25]

    Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A, Shields A J 2008 App. Phys. Lett. 93 081115Google Scholar

    [26]

    Couto O D D, Lazic S, Iikawa F, Stotz J A H, Jahn U, Hey R, Santos P V 2009 Nat. Photon 3 645Google Scholar

    [27]

    Metcalfe M, Carr S M, Muller A, Solomon G S, Lawall J 2010 Phys. Rev. Lett. 105 037401Google Scholar

    [28]

    McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, Anderson D, Jones G A C, Farrer I, Ritchie D A 2011 Nature 477 439Google Scholar

    [29]

    Yeo I, de Assis P L, Gloppe A, Dupont-Ferrier E, Verlot P, Malik N S, Dupuy E, Claudon J, Gerard J M, Auffeves A, Nogues G, Seidelin S, Poizat J P, Arcizet O, Richard M 2014 Nat. Nanotech 9 106Google Scholar

    [30]

    Schulein F J R, Zallo E, Atkinson P, Schmidt O G, Trotta R, Rastelli A, Wixforth A, Krenner H J 2015 Nat. Nanotech. 10 512Google Scholar

    [31]

    Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879Google Scholar

    [32]

    Kolkowitz S, Jayich A C B, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603Google Scholar

    [33]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [34]

    Teissier J, Barfuss A, Appel P, Neu E, Maletinsky P 2014 Phys. Rev. Lett. 113 020503Google Scholar

    [35]

    Ovartchaiyapong P, Lee K W, Myers B A, Jayich A C B 2014 Nat. Commun. 5 4429Google Scholar

    [36]

    MacQuarrie E R, Gosavi T A, Bhave S A, Fuchs G D 2015 Phys. Rev. B 92 224419Google Scholar

    [37]

    Barfuss A, Teissier J, Neu E, Nunnenkamp A, Maletinsky P 2015 Nat. Phys. 11 820Google Scholar

    [38]

    MacQuarrie E R, Gosavi T A, Moehle A M, Jungwirth N R, Bhave S A, Fuchs G D 2015 Optica 2 233Google Scholar

    [39]

    Meesala S, Sohn Y I, Atikian H A, Kim S, Burek M J, Choy J T, Loncar M 2016 Phys. Rev. Appl. 5 034010Google Scholar

    [40]

    Gao W B, Imamoglu A, Bernien H, Hanson R 2015 Nat. Photon. 9 363Google Scholar

    [41]

    Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers L J, McMurtrie R L, Manson N B, Jelezko F, Wrachtrup J 2009 Phys. Rev. Lett. 102 195506Google Scholar

    [42]

    Maze J R, Gali A, Togan E, Chu Y, Trifonov A, Kaxiras E, Lukin M D 2011 New J. Phys. 13 025025Google Scholar

    [43]

    Doherty M W, Manson N B, Delaney P, Hollenberg L C L 2011 New J. Phys. 13 025019Google Scholar

    [44]

    Rath P, Ummethala S, Nebel C, Pernice W H P 2015 Phys. Status Solidi A 212 2385Google Scholar

    [45]

    Khanaliloo B, Jayakumar H, Hryciw A C, Lake D P, Kaviani H, Barclay P E 2015 Phys. Rev. X 5 041051Google Scholar

    [46]

    Golter D A, Oo T, Amezcua M, Stewart K A, Wang H L 2016 Phys. Rev. Lett. 116 143602Google Scholar

    [47]

    成泰民, 鲜于泽 2006 55 4828Google Scholar

    Cheng T M, Xian Y Z 2006 Acta Phys. Sin. 55 4828Google Scholar

    [48]

    Golter D A, Oo T, Amezcua M, Lekavicius I, Stewart K A, Wang H L 2016 Phys. Rev. X 6 041060Google Scholar

    [49]

    玻恩 M, 黄昆 1989 晶格动力学理论 (北京: 北京大学出版社) 第42−231页

    Born M, Huang K 1989 Lattice Dynamics Theory (Beijing: Peking University Press) pp42−231 (in Chinese)

    [50]

    蒋文灿, 陈华, 张伟斌 2016 12 126301Google Scholar

    Jiang W C, Chen H, Zhang W B 2016 Acta Phys. Sin. 12 126301Google Scholar

    [51]

    Fincham D 1994 Mol. Simul. 13 1Google Scholar

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取.  , 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 申圆圆, 王博, 柯冬倩, 郑斗斗, 李中豪, 温焕飞, 郭浩, 李鑫, 唐军, 马宗敏, 李艳君, 伊戈尔∙费拉基米罗维奇∙雅明斯基, 刘俊. 高频率分辨的金刚石氮-空位色心宽频谱成像技术.  , 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [3] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控.  , 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [4] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理.  , 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [5] 杨志平, 孔熙, 石发展, 杜江峰. 金刚石表面纳米尺度水分子的相变观测.  , 2022, 71(6): 067601. doi: 10.7498/aps.71.20211348
    [6] 安盟, 孙旭辉, 陈东升, 杨诺. 石墨烯基复合热界面材料导热性能研究进展.  , 2022, 71(16): 166501. doi: 10.7498/aps.71.20220306
    [7] 林豪彬, 张少春, 董杨, 郑瑜, 陈向东, 孙方稳. 基于金刚石氮-空位色心的温度传感.  , 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [8] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究.  , 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [9] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制.  , 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [10] 杨志平, 孔熙, 石发展(Fazhan Shi), 杜江峰. 金刚石表面纳米尺度水分子的相变观测.  , 2021, (): . doi: 10.7498/aps.70.20211348
    [11] 赵鹏举, 孔飞, 李瑞, 石发展, 杜江峰. 基于金刚石固态单自旋的纳米尺度零场探测.  , 2021, 70(21): 213301. doi: 10.7498/aps.70.20211363
    [12] 冯园耀, 李中豪, 张扬, 崔凌霄, 郭琦, 郭浩, 温焕飞, 刘文耀, 唐军, 刘俊. 固态金刚石氮空位色心光学调控优化.  , 2020, 69(14): 147601. doi: 10.7498/aps.69.20200072
    [13] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控.  , 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [14] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠.  , 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [15] 廖庆洪, 叶杨, 李红珍, 周南润. 金刚石氮空位色心耦合机械振子和腔场系统中方差压缩研究.  , 2018, 67(4): 040302. doi: 10.7498/aps.67.20172170
    [16] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量.  , 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [17] 董杨, 杜博, 张少春, 陈向东, 孙方稳. 基于金刚石体系中氮-空位色心的固态量子传感.  , 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [18] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清. 利用金刚石氮-空位色心精确测量弱磁场的探索.  , 2017, 66(23): 230601. doi: 10.7498/aps.66.230601
    [19] 刘东奇, 常彦春, 刘刚钦, 潘新宇. 金刚石纳米颗粒中氮空位色心的电子自旋研究.  , 2013, 62(16): 164208. doi: 10.7498/aps.62.164208
    [20] 朱砚磬, 王志强. 自旋波-声子耦合对反铁磁体红外吸收谱的影响.  , 1966, 22(3): 360-370. doi: 10.7498/aps.22.360
计量
  • 文章访问数:  8087
  • PDF下载量:  305
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-04
  • 修回日期:  2020-12-19
  • 上网日期:  2021-03-10
  • 刊出日期:  2021-03-20

/

返回文章
返回
Baidu
map