搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

LaAlO3/SrTiO3界面增强光伏效应

息剑峰 李宝河 刘丹 李熊 耿爱丛 李笑

引用本文:
Citation:

LaAlO3/SrTiO3界面增强光伏效应

息剑峰, 李宝河, 刘丹, 李熊, 耿爱丛, 李笑

Enhanced photovoltaic effect in LaAlO3/SrTiO3 interface

Xi Jian-Feng, Li Bao-He, Liu Dan, Li Xiong, Geng Ai-Cong, Li Xiao
PDF
HTML
导出引用
  • 探索LaAlO3/SrTiO3(LAO/STO)界面产生的新奇物理特性对理解关联电子系统中多自由度耦合和设计功能材料器件具有重要的价值. 本文通过脉冲激光沉积方法在SrTiO3基底上制备了LAO/STO薄膜, 研究了正面照射LAO/STO膜面和侧面照射LAO/STO界面时的光伏效应, 探讨了LAO/STO界面对光伏效应的影响. 研究结果表明, 在同样光照能量下侧面照射LAO/STO界面产生的光电压远高于正面照射LAO/STO膜面产生的光电压, 说明LAO/STO界面对光伏效应有明显的增强作用. 通过偏压调控可以进一步增强照射LAO/STO界面产生的光电压, 当偏压为60 V时, LAO/STO样品的位置探测灵敏度达到了36.8 mV/mm. 这些研究结果为设计场调控位置敏感探测器等新型光电子器件提供了新的思路.
    Since high-mobility electron gas, which is also called two-dimensional electron gas, was discovered at the LaAlO3/SrTiO3 (LAO/STO) interface, SrTiO3-based heterostructures and nanostructures have become an attractive platform for novel nanoelectronic devices. Exploring the novel physical properties of LAO/STO interface and the mechanisms of interface effect is the key to designing and fabricating the new photoelectric devices. The LAO/STO sample is prepared on an STO (001) substrate by pulsed laser deposition. In order to study the influence of interface effect on photovoltaic effect in the LAO/STO sample, a KrF pulse laser with a wavelength of 248 nm and an energy density of 50 mJ/cm2 is chosen as an ultraviolet light source, a sampling oscilloscope of 350 MHz is used to measure the photovoltages, and a precision adjustable slit is adopted to control the size of irradiation area. The photovoltaic effect is studied under the condition of applied electric field at ambient temperature. The experimental results prove that the photovolatge of irradiating on the side of sample (LAO/STO interface) is higher than on the front of sample (film surface) under the same area of irradiation. Lateral photovoltaic effect is discovered in the LAO/STO sample. Irradiating on the side of sample (LAO/STO interface) can further improve the lateral photovoltaic effect in the LAO/STO sample. The open-circuit photovoltage depends linearly on the illuminated position, and the sensitivity reaches 36.8 mV/mm. The sensitivity of the lateral photovoltaic effect can be modified by the bias voltage. The experimental results not only contributes to better understanding the interface effect in LAO/STO interface, but also provides a basis for designing and using photoelectric devices for position-sensitive detection.
      通信作者: 息剑峰, xijf@btbu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62075245, 52001012)和北京工商大学青年教师科研启动基金(批准号: PXM2019_014213_000007)资助的课题
      Corresponding author: Xi Jian-Feng, xijf@btbu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075245, 52001012) and the Research Foundation for Youth Scholars of Beijing Technology and Business University, China (Grant No. PXM2019_014213_000007)
    [1]

    Tra V T, Chen J W, Huang P C, Huang B C, Cao Y, Yeh C H, Liu H J, Eliseev E A, Morozovska A N, Lin J Y, Chen Y C, Chu M W, Chiu P W, Chiu Y P, Chen L Q, Wu C L, Chu Y H 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [8]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [9]

    Lee P, Singh V, Guo G, Liu H J, Lin J C, Chu Y H, Chen C, Chu M W 2016 Nat. Commun. 7 12773Google Scholar

    [10]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [11]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [12]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765Google Scholar

    [13]

    Huang M, Bi F, Bark C W, Ryu S, Cho K H, Eom C B, Levy J 2014 Appl. Phys. Lett. 104 161606Google Scholar

    [14]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [15]

    Harsan Ma H J, Huang Z, Lu W M, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T, Ariando 2014 Appl. Phys. Lett. 105 011603Google Scholar

    [16]

    Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493Google Scholar

    [17]

    Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J, Kim J 2015 Nat. Commun. 6 8035Google Scholar

    [18]

    Irvin P, Ma Y, Bogorin D F, Cen C, Bark C W, Folkman C M, Eom C B, Levy J 2010 Nat. Photonics 4 849Google Scholar

    [19]

    Behtash M, Nazir S, Wang Y, Yang K 2016 Phys. Chem. Chem. Phys. 18 6831Google Scholar

    [20]

    刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民 2019 68 067302Google Scholar

    Dao L Y, Zhang Z T, Xiao Y T, Zhang M H, Wang Sh, He J, Jia J S, Yu L J, Sun B, Xiong C M 2019 Acta Phys. Sin. 68 067302Google Scholar

    [21]

    Gu M, Wang J, Wu X S, Zhang G P 2012 J. Phys. Chem. C 116 24993Google Scholar

    [22]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204Google Scholar

    [23]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405Google Scholar

    [24]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [25]

    Gunkel F, Brinks P, Susanne H E, Dittmann R, Huijben M, Kleibeuker J E, Koster G, Rijnders G, Waser R 2012 Appl. Phys. Lett. 100 052103Google Scholar

    [26]

    Caputo M, Boselli M, Filippetti A, Lemal S, Li D, Chikina A, Cancellieri C, Schmitt T, Triscone J M, Ghosez P, Gariglio S, Strocov V N 2020 Phys. Rev. Mater. 4 035001Google Scholar

    [27]

    Bell C, Harashima S, Hikita Y, Hwang H Y 2009 Appl. Phys. Lett. 94 222111Google Scholar

    [28]

    Gariglio S, Fete A, Triscone J M 2016 J. Phys. Condens. Matter 27 283201

    [29]

    Arnold D, Fuchs D, Wolff K, Schafer R 2019 Appl. Phys. Lett. 115 122601Google Scholar

    [30]

    Yu C, Wang H 2010 Sensors 10 10155Google Scholar

    [31]

    Lucovsky G 1960 J. Appl. Phys. 31 1088Google Scholar

  • 图 1  LAO/STO样品的截面TEM图 (a)整体TEM图; (b) LAO/STO界面高分辨TEM图; (c) STO/LAO界面高分辨TEM图

    Fig. 1.  TEM images of LAO/STO sample: (a) TEM image of LAO/STO sample; (b) HR-TEM image of LAO/STO interface; (c) HR-TEM image of STO/LAO interface.

    图 2  (a) 不同偏压下248 nm激光正面照射LAO/STO样品光生电压波形图; (b) 正面照射光生电压随偏压的变化; (c) 不同偏压下激光侧面照射LAO/STO样品光生电压波形图; (d) 侧面照射光生电压随偏压的变化

    Fig. 2.  (a) Photovoltaic waveforms for LAO/STO sample at different bias voltages under the 248 nm laser front illumination; (b) photovoltages as a function of bias voltages under front illumination; (c) photovoltaic waveforms for LAO/STO sample at different bias voltages under side illumination; (d) photovoltages as a function of bias voltages under side illumination.

    图 3  (a) 正面照射样品光生电压随光照区域宽度d展宽的变化; (b) 侧面照射样品光生电压随光照区域宽度d展宽的变化

    Fig. 3.  (a) Photovoltages as a function of irradiated area width d under front illumination; (b) photovoltages as a function of irradiated area width d under side illumination.

    图 4  (a) 正面照射样品光生电压随光照区域位置X的变化; (b) 侧面照射样品光生电压随光照区域位置X的变化

    Fig. 4.  (a) Photovoltages as a function of irradiated position X under front illumination; (b) photovoltages as a function of irradiated position X under side illumination.

    图 5  偏压为60 V时正面和侧面照射样品光生电压随光照区域位置的变化

    Fig. 5.  Photovoltages as a function of irradiated position under front illumination and side illumination at bias voltage 60 V.

    Baidu
  • [1]

    Tra V T, Chen J W, Huang P C, Huang B C, Cao Y, Yeh C H, Liu H J, Eliseev E A, Morozovska A N, Lin J Y, Chen Y C, Chu M W, Chiu P W, Chiu Y P, Chen L Q, Wu C L, Chu Y H 2013 Adv. Mater. 25 3357Google Scholar

    [2]

    Thiel S, Hammerl G, Schmehl A, Schneider C W, Mannhart J 2006 Science 313 1942Google Scholar

    [3]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196Google Scholar

    [4]

    Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624Google Scholar

    [5]

    Bi F, Huang M, Ryu S, Lee H, Bark C W, Eom C B, Irvin P, Levy J 2014 Nat. Commun. 5 5019Google Scholar

    [6]

    李敏, 时鑫娜, 张泽霖, 吉彦达, 樊济宇, 杨浩 2019 68 087302Google Scholar

    Li M, Shi X N, Zhang Z L, Ji Y D, Fan J Y, Yang H 2019 Acta Phys. Sin. 68 087302Google Scholar

    [7]

    Li L, Richter C, Mannhart J, Ashoori R C 2011 Nat. Phys. 7 762Google Scholar

    [8]

    Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y, Moler K A 2011 Nat. Phys. 7 767Google Scholar

    [9]

    Lee P, Singh V, Guo G, Liu H J, Lin J C, Chu Y H, Chen C, Chu M W 2016 Nat. Commun. 7 12773Google Scholar

    [10]

    朱立峰, 潘文远, 谢燕, 张波萍, 尹阳, 赵高磊 2019 68 217701Google Scholar

    Zhu L F, Pan W Y, Xie Y, Zhang B P, Yin Y, Zhao G L 2019 Acta Phys. Sin. 68 217701Google Scholar

    [11]

    Sharma P, Huang Z, Li M, Li C, Hu S, Lee H, Lee J W, Eom C B, Pennycook S J, Seidel J 2018 Adv. Funct. Mater. 28 1707159Google Scholar

    [12]

    Bark C W, Sharma P, Wang Y, Baek S H, Lee S, Ryu S, Folkman C M, Paudel T R, Kumar A, Kalinin S V, Sokolov A, Tsymbal E Y, Rzchowski M S, Gruverman A, Eom C B 2012 Nano Lett. 12 1765Google Scholar

    [13]

    Huang M, Bi F, Bark C W, Ryu S, Cho K H, Eom C B, Levy J 2014 Appl. Phys. Lett. 104 161606Google Scholar

    [14]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [15]

    Harsan Ma H J, Huang Z, Lu W M, Annadi A, Zeng S W, Wong L M, Wang S J, Venkatesan T, Ariando 2014 Appl. Phys. Lett. 105 011603Google Scholar

    [16]

    Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A, Hilgenkamp H 2007 Nat. Mater. 6 493Google Scholar

    [17]

    Ngo T D N, Chang J W, Lee K, Han S, Lee J S, Kim Y H, Jung M H, Doh Y J, Choi M S, Song J, Kim J 2015 Nat. Commun. 6 8035Google Scholar

    [18]

    Irvin P, Ma Y, Bogorin D F, Cen C, Bark C W, Folkman C M, Eom C B, Levy J 2010 Nat. Photonics 4 849Google Scholar

    [19]

    Behtash M, Nazir S, Wang Y, Yang K 2016 Phys. Chem. Chem. Phys. 18 6831Google Scholar

    [20]

    刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民 2019 68 067302Google Scholar

    Dao L Y, Zhang Z T, Xiao Y T, Zhang M H, Wang Sh, He J, Jia J S, Yu L J, Sun B, Xiong C M 2019 Acta Phys. Sin. 68 067302Google Scholar

    [21]

    Gu M, Wang J, Wu X S, Zhang G P 2012 J. Phys. Chem. C 116 24993Google Scholar

    [22]

    Nakagawa N, Hwang H Y, Muller D A 2006 Nat. Mater. 5 204Google Scholar

    [23]

    Bristowe N C, Littlewood P B, Artacho E 2011 Phys. Rev. B 83 205405Google Scholar

    [24]

    Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D 2007 Phys. Rev. B 75 121404Google Scholar

    [25]

    Gunkel F, Brinks P, Susanne H E, Dittmann R, Huijben M, Kleibeuker J E, Koster G, Rijnders G, Waser R 2012 Appl. Phys. Lett. 100 052103Google Scholar

    [26]

    Caputo M, Boselli M, Filippetti A, Lemal S, Li D, Chikina A, Cancellieri C, Schmitt T, Triscone J M, Ghosez P, Gariglio S, Strocov V N 2020 Phys. Rev. Mater. 4 035001Google Scholar

    [27]

    Bell C, Harashima S, Hikita Y, Hwang H Y 2009 Appl. Phys. Lett. 94 222111Google Scholar

    [28]

    Gariglio S, Fete A, Triscone J M 2016 J. Phys. Condens. Matter 27 283201

    [29]

    Arnold D, Fuchs D, Wolff K, Schafer R 2019 Appl. Phys. Lett. 115 122601Google Scholar

    [30]

    Yu C, Wang H 2010 Sensors 10 10155Google Scholar

    [31]

    Lucovsky G 1960 J. Appl. Phys. 31 1088Google Scholar

  • [1] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用.  , 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响.  , 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [3] 陈东, 余本海. 外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性.  , 2020, 69(22): 226301. doi: 10.7498/aps.69.20200839
    [4] 王雪婷, 付钰豪, 那广仁, 李红东, 张立军. 钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性.  , 2019, 68(15): 157101. doi: 10.7498/aps.68.20190596
    [5] 刀流云, 张子涛, 肖煜同, 张明昊, 王帅, 何珺, 贾金山, 余乐军, 孙波, 熊昌民. 光电协同增强的场效应对LaAlO3/SrTiO3界面中持续光电导的调控.  , 2019, 68(6): 067302. doi: 10.7498/aps.68.20182204
    [6] 张龙艳, 徐进良, 雷俊鹏. 纳米尺度下气泡核化生长的分子动力学研究.  , 2018, 67(23): 234702. doi: 10.7498/aps.67.20180993
    [7] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [8] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响.  , 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [9] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响.  , 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [10] 徐佳佳, 胡春光, 陈雪娇, 张雷, 傅星, 胡小唐. 有机半导体薄膜生长原位实时测量方法的研究.  , 2015, 64(23): 230701. doi: 10.7498/aps.64.230701
    [11] 李振武. 单壁碳纳米管膜及其三聚氰胺甲醛树脂复合材料的光电特性.  , 2014, 63(10): 106101. doi: 10.7498/aps.63.106101
    [12] 袁文瑞, 李毅, 王晓华, 郑鸿柱, 陈少娟, 陈建坤, 孙瑶, 唐佳茵, 刘飞, 郝如龙, 方宝英, 肖寒. VO2/AZO复合薄膜的制备及其光电特性研究.  , 2014, 63(21): 218101. doi: 10.7498/aps.63.218101
    [13] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性.  , 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [14] 黄秀峰, 潘礼庆, 李晨曦, 王强, 孙刚, 陆坤权. 低温下二氧化硅介孔内水的振动性质.  , 2012, 61(13): 136801. doi: 10.7498/aps.61.136801
    [15] 余志强. 硅基外延OsSi2电子结构及光电特性研究.  , 2012, 61(21): 217102. doi: 10.7498/aps.61.217102
    [16] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展.  , 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
    [17] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响.  , 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [18] 缪智武, 丁建文, 颜晓红, 唐娜斯. 畸变对hopping电导的影响:ThueMorse纳米结构模型.  , 2003, 52(5): 1213-1217. doi: 10.7498/aps.52.1213
    [19] 汪六九, 朱美芳, 刘丰珍, 刘金龙, 韩一琴. 热丝化学气相沉积技术低温制备多晶硅薄膜的结构与光电特性.  , 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响.  , 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  5325
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-14
  • 修回日期:  2021-01-22
  • 上网日期:  2021-04-14
  • 刊出日期:  2021-04-20

/

返回文章
返回
Baidu
map