搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

EuS/Ta异质结的极大磁电阻效应

芦佳 甘渝林 颜雷 丁洪

引用本文:
Citation:

EuS/Ta异质结的极大磁电阻效应

芦佳, 甘渝林, 颜雷, 丁洪

Infinite magnetoresistance of EuS/Ta heterostructure

Lu Jia, Gan Yu-Lin, Yan Lei, Ding Hong
PDF
HTML
导出引用
  • 在铁磁/超导异质结中, 铁磁体的交换场通过近邻效应将导致超导体准粒子态密度的塞曼劈裂. 基于该效应, 在外磁场不强的情况下, 通过外加磁场可以有效地调节铁磁/超导界面处的交换作用, 从而实现超导体在正常态和超导态之间转换, 产生极大磁电阻. 本文利用脉冲激光沉积方法制备了EuS/Ta异质结并研究了其电磁特性. Ta在3.6 K以下为超导态, EuS在20 K以下为铁磁态. 在2 K时, EuS/Ta异质结中可观测蝴蝶型磁滞回线, 证明在低磁场下(< ±0.18 T)异质结中EuS铁磁态和Ta超导态共存. 磁输运测试表明, 通过施加外磁场可以有效调节EuS的交换场, 随着交换场的增大, 同时也加强了界面处的交换作用, 从而抑制Ta的超导态, 实现了Ta在超导态和正常态之间的转变, 在EuS/Ta异质结中观测到了高达144000%的磁电阻. 本文制备的EuS/Ta异质结具有极大磁电阻效应, 在自旋电子学器件中有潜在的应用前景.
    Based on the proximity effect, the exchange interaction at the interface between a ferromagnetic insulator (FI) and a superconductor (S) could enhance the Zeeman splitting of the superconducting quasiparticle density of states. The superconducting electrons feel the exchange field on the surface of the S layer. Therefore, tuning the internal exchange field at the FI/S interface could switch the superconductor from a superconducting state to a normal state, leading to an infinite magnetoresistance in FI/S heterostructure. Here in this work, we fabricate the EuS/Ta heterojunction by the pulsed laser deposition, and perform the magnetotransport measurements. In the EuS/Ta heterojunction, Ta film as a typical BSC supercenter exhibits the superconducting transition under 3.6 K, and the EuS film is ferromagnetic under 20 K. The magnetization of EuS is suppressed by superconductivity of Ta at 0.01 T below 3 K. In addition, the butterfly-type hysteresis loop is observed at 2 K. And the decrease of the saturation magnetization of EuS/Ta heterostructure is observed by comparing with the EuS single layer. It is caused by a reconstruction of homogeneous ferromagnetic order in the EuS ferromagnetic layer due to the proximity effect with the Ta superconducting layer. The above measurement results show that the competition between the ferromagnetism of EuS film and superconductivity of Ta film below Tc of Ta film. If the exchange field of the FI is sufficiently strong, it tries to align the spins of the electrons of a Cooper pair in S layer parallel to each other, thus destroying the superconductivity. Meanwhile, the superconductivity in S layer will be recovered when the exchange field of the FI is weak. The resistance at a specific value of the magnetic field (1 T) steeply drops to zero, and clear hysteresis behavior is observed in EuS/Ta heterostructure, resulting in an infinite magnetoresistance up to 144000%, by tuning the internal exchange field at EuS/Ta interface. Meanwhile, the anomalous Hall effect with hysteresis behavior is observed at 2 K, indicating that the electron in Ta film is spin polarized due to the magnetic proximity effect near the EuS/Ta interface. Our results show that the EuS/Ta heterostructure with infinite magnetoresistance could be a good candidate for spintronic devices.
      通信作者: 颜雷, lyan@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0300600)、中国科学院战略性先导科技专项(批准号: XDB28000000, XDB07000000)和北京市科学技术委员会(批准号: Z191100007219012)资助的课题.
      Corresponding author: Yan Lei, lyan@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0300600), the Strategic Priority Research Program of Chinese Academy of Sciences, China(Grant Nos. XDB28000000, XDB07000000), and the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219012)
    [1]

    Deutscher G, de Gennes P G 1969 Superconductivity (Vols. 1 and 2) (New York: Marcel Dekker, Inc.) pp1005−1034

    [2]

    Dotsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P, Popkov A F 2005 J. Opt. Soc. Am. B:Opt. Phys. 22 240Google Scholar

    [3]

    de Gennes P G 1964 Rev. Mod. Phys. 36 225Google Scholar

    [4]

    de Gennes P G 1966 Phys. Lett. 23 10Google Scholar

    [5]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [6]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [7]

    李晓薇 2005 54 2313Google Scholar

    Li X W 2005 Acta Phys. Sin. 54 2313Google Scholar

    [8]

    金霞, 董正超, 梁志鹏, 仲崇贵 2013 62 047401Google Scholar

    Jin X, Dong Z C, Liang Z P, Zhong C G 2013 Acta Phys. Sin. 62 047401Google Scholar

    [9]

    Gu J Y, You C Y, Jiang J S, Pearson J, Bazaliy Y B, Bader S D 2002 Phys. Rev. Lett. 89 267001Google Scholar

    [10]

    Rusanov A Y, Habraken S, Aarts J 2006 Phys. Rev. B 73 060505Google Scholar

    [11]

    Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235Google Scholar

    [12]

    Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637Google Scholar

    [13]

    Tedrow P M, Tkaczyk J E, Kumar A 1986 Phys. Rev. Lett. 56 1746Google Scholar

    [14]

    Hauser J J 1969 Phys. Rev. Lett. 23 374Google Scholar

    [15]

    Li B, Roschewsky N, Assaf B A, Eich M, Epstein-Martin M, Heiman D, Munzenberg M, Moodera J S 2013 Phys. Rev. Lett. 110 097001Google Scholar

    [16]

    Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402Google Scholar

    [17]

    Zhang X, Shi X 2020 J. Supercond. Novel. Magn. 33 217Google Scholar

    [18]

    张裕恒 2009 超导物理 (中国科学技术大学出版社) 第7页

    Zhang Y H 2009 Superconducting Physics (University of Science and Technology of China Press) p7 (in Chinese)

    [19]

    Stachow-Wójcik A, Story T, Dobrowolski W, Arciszewska M, Gałązka R R, Kreijveld M W, Swüste C H W, Swagten H J M, de Jonge W J M, Twardowski A, Sipatov A Y 1999 Phys. Rev. B 60 15220Google Scholar

    [20]

    Smits C J P, Filip A T, Kohlhepp J T, Swagten H J M, Koopmans B, and de Jonge W J M 2004 J. Appl. Phys. 95 7405Google Scholar

    [21]

    Miao G X, Moodera J S 2009 Appl. Phys. Lett. 94 182504Google Scholar

    [22]

    Di Bernardo A, Diesch S, Gu Y, Linder J, Divitini G, Ducati C, Scheer E, Blamire M G, Robinson J W A 2015 Nat. Commun. 6 9053Google Scholar

    [23]

    Di Bernardo A, Salman Z, Wang X L, Amado M, Egilmez M, Flokstra M G, Suter A, Lee S L, Zhao J H, Prokscha T, Morenzoni E, Blamire M G, Linder J, Robinson J W A 2015 Phys. Rev. X 5 041021Google Scholar

    [24]

    Diesch S, Machon P, Wolz M, Surgers C, Beckmann D, Belzig W, Scheer E 2018 Nat. Commun. 9 5248Google Scholar

    [25]

    Strambini E, Golovach V N, De Simoni G, Moodera J S, Bergeret F S, Giazotto F 2017 Phys. Rev. Mater. 1 054402Google Scholar

    [26]

    郭子政, 胡旭波 2013 62 057501Google Scholar

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501Google Scholar

    [27]

    Garifullin I A, Tikhonov D A, Garif’yanov N N, Fattakhov M Z, Theis-Bröhl K, Westerholt K, Zabel H 2002 Appl. Magn. Reson. 22 439Google Scholar

    [28]

    Mühge T, Garif'yanov N N, Goryunov Y V, Theis-Bröhl K, Westerholt K, Garifullin I A, Zabel H 1998 Physica C 296 325Google Scholar

    [29]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. B 64 134506Google Scholar

    [30]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phy. Rev. Lett. 110 147207Google Scholar

    [31]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

  • 图 1  EuS/Ta异质结结构以及输运测试示意图

    Fig. 1.  Schematic diagram of the EuS/Ta heterostructure geometry.

    图 2  EuS/Ta异质结的电阻随温度的变化曲线; 插图为超导转变温度放大图

    Fig. 2.  Resistance as a function of temperature for EuS/Ta heterostructure.Inset: zoom of R-T curve at low temperature range.

    图 3  (a) EuS/Ta异质结的热磁曲线, 插图是低温区域的放大, 黑色箭头指向热磁曲线的拐点; (b) 2 K时EuS/Ta异质结和EuS单层膜的磁滞回线

    Fig. 3.  (a) Magnetization of temperature dependence of the EuS/Ta heterostructure. Inset: zoom of M-T curve at low temperature, the black arrow marks the kick point of M-T curve with H = 0.01 T; (b) magnetic hysteresis loop of the EuS/Ta heterostructure and EuS single layer at 2 K, respectively.

    图 4  EuS/Ta异质结的在2 K时的磁电阻和霍尔效应

    Fig. 4.  MR and Hall effect as a function of field of EuS/Ta heterostructure at 2 K.

    Baidu
  • [1]

    Deutscher G, de Gennes P G 1969 Superconductivity (Vols. 1 and 2) (New York: Marcel Dekker, Inc.) pp1005−1034

    [2]

    Dotsch H, Bahlmann N, Zhuromskyy O, Hammer M, Wilkens L, Gerhardt R, Hertel P, Popkov A F 2005 J. Opt. Soc. Am. B:Opt. Phys. 22 240Google Scholar

    [3]

    de Gennes P G 1964 Rev. Mod. Phys. 36 225Google Scholar

    [4]

    de Gennes P G 1966 Phys. Lett. 23 10Google Scholar

    [5]

    Buzdin A I 2005 Rev. Mod. Phys. 77 935Google Scholar

    [6]

    Bergeret F S, Volkov A F, Efetov K B 2005 Rev. Mod. Phys. 77 1321Google Scholar

    [7]

    李晓薇 2005 54 2313Google Scholar

    Li X W 2005 Acta Phys. Sin. 54 2313Google Scholar

    [8]

    金霞, 董正超, 梁志鹏, 仲崇贵 2013 62 047401Google Scholar

    Jin X, Dong Z C, Liang Z P, Zhong C G 2013 Acta Phys. Sin. 62 047401Google Scholar

    [9]

    Gu J Y, You C Y, Jiang J S, Pearson J, Bazaliy Y B, Bader S D 2002 Phys. Rev. Lett. 89 267001Google Scholar

    [10]

    Rusanov A Y, Habraken S, Aarts J 2006 Phys. Rev. B 73 060505Google Scholar

    [11]

    Hao X, Moodera J S, Meservey R 1990 Phys. Rev. B 42 8235Google Scholar

    [12]

    Moodera J S, Hao X, Gibson G A, Meservey R 1988 Phys. Rev. Lett. 61 637Google Scholar

    [13]

    Tedrow P M, Tkaczyk J E, Kumar A 1986 Phys. Rev. Lett. 56 1746Google Scholar

    [14]

    Hauser J J 1969 Phys. Rev. Lett. 23 374Google Scholar

    [15]

    Li B, Roschewsky N, Assaf B A, Eich M, Epstein-Martin M, Heiman D, Munzenberg M, Moodera J S 2013 Phys. Rev. Lett. 110 097001Google Scholar

    [16]

    Yang Q I, Zhao J, Zhang L, Dolev M, Fried A D, Marshall A F, Risbud S H, Kapitulnik A 2014 Appl. Phys. Lett. 104 082402Google Scholar

    [17]

    Zhang X, Shi X 2020 J. Supercond. Novel. Magn. 33 217Google Scholar

    [18]

    张裕恒 2009 超导物理 (中国科学技术大学出版社) 第7页

    Zhang Y H 2009 Superconducting Physics (University of Science and Technology of China Press) p7 (in Chinese)

    [19]

    Stachow-Wójcik A, Story T, Dobrowolski W, Arciszewska M, Gałązka R R, Kreijveld M W, Swüste C H W, Swagten H J M, de Jonge W J M, Twardowski A, Sipatov A Y 1999 Phys. Rev. B 60 15220Google Scholar

    [20]

    Smits C J P, Filip A T, Kohlhepp J T, Swagten H J M, Koopmans B, and de Jonge W J M 2004 J. Appl. Phys. 95 7405Google Scholar

    [21]

    Miao G X, Moodera J S 2009 Appl. Phys. Lett. 94 182504Google Scholar

    [22]

    Di Bernardo A, Diesch S, Gu Y, Linder J, Divitini G, Ducati C, Scheer E, Blamire M G, Robinson J W A 2015 Nat. Commun. 6 9053Google Scholar

    [23]

    Di Bernardo A, Salman Z, Wang X L, Amado M, Egilmez M, Flokstra M G, Suter A, Lee S L, Zhao J H, Prokscha T, Morenzoni E, Blamire M G, Linder J, Robinson J W A 2015 Phys. Rev. X 5 041021Google Scholar

    [24]

    Diesch S, Machon P, Wolz M, Surgers C, Beckmann D, Belzig W, Scheer E 2018 Nat. Commun. 9 5248Google Scholar

    [25]

    Strambini E, Golovach V N, De Simoni G, Moodera J S, Bergeret F S, Giazotto F 2017 Phys. Rev. Mater. 1 054402Google Scholar

    [26]

    郭子政, 胡旭波 2013 62 057501Google Scholar

    Guo Z Z, Hu X B 2013 Acta Phys. Sin. 62 057501Google Scholar

    [27]

    Garifullin I A, Tikhonov D A, Garif’yanov N N, Fattakhov M Z, Theis-Bröhl K, Westerholt K, Zabel H 2002 Appl. Magn. Reson. 22 439Google Scholar

    [28]

    Mühge T, Garif'yanov N N, Goryunov Y V, Theis-Bröhl K, Westerholt K, Garifullin I A, Zabel H 1998 Physica C 296 325Google Scholar

    [29]

    Bergeret F S, Volkov A F, Efetov K B 2001 Phys. Rev. B 64 134506Google Scholar

    [30]

    Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L, Chien C L 2013 Phy. Rev. Lett. 110 147207Google Scholar

    [31]

    Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q, Chien C L 2012 Phys. Rev. Lett. 109 107204Google Scholar

  • [1] 丰家峰, 陈星, 魏红祥, 陈鹏, 兰贵彬, 刘要稳, 郭经红, 黄辉, 韩秀峰. 自由层磁性交换偏置效应调控隧穿磁电阻磁传感单元性能.  , 2023, 72(19): 197103. doi: 10.7498/aps.72.20231003
    [2] 郑军, 马力, 相阳, 李春雷, 袁瑞旸, 陈箐. 不同方向局域交换场对锡烯自旋输运的影响.  , 2022, 71(14): 147201. doi: 10.7498/aps.71.20220277
    [3] 相阳, 郑军, 李春雷, 郭永. 局域交换场和电场调控的锗烯纳米带自旋过滤效应.  , 2019, 68(18): 187302. doi: 10.7498/aps.68.20190817
    [4] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性.  , 2015, 64(9): 097701. doi: 10.7498/aps.64.097701
    [5] 张元磊, 李哲, 徐坤, 敬超. 哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究.  , 2015, 64(6): 066402. doi: 10.7498/aps.64.066402
    [6] 吕厚祥, 石德政, 谢征微. 铁磁/半导体(绝缘体)/铁磁异质结中渡越时间与两铁磁层磁矩夹角变化的关系.  , 2013, 62(20): 208502. doi: 10.7498/aps.62.208502
    [7] 王怀强, 杨运友, 鞠艳, 盛利, 邢定钰. 铁磁绝缘体间的极薄Bi2Se3薄膜的相变研究.  , 2013, 62(3): 037202. doi: 10.7498/aps.62.037202
    [8] 刘德, 张红梅, 贾秀敏. 对称抛物势阱磁性隧道结中的自旋输运及磁电阻效应.  , 2011, 60(1): 017506. doi: 10.7498/aps.60.017506
    [9] 贾兴涛, 夏钶. IrMn基反铁磁自旋阀的巨磁电阻效应.  , 2011, 60(12): 127202. doi: 10.7498/aps.60.127202
    [10] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究.  , 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [11] 许小勇, 钱丽洁, 胡经国. 铁磁多层膜中的力致磁电阻效应.  , 2009, 58(3): 2023-2029. doi: 10.7498/aps.58.2023
    [12] 苏喜平, 包 瑾, 闫树科, 徐晓光, 姜 勇. 双合成反铁磁结构及其对自旋阀巨磁电阻效应的影响.  , 2008, 57(4): 2509-2513. doi: 10.7498/aps.57.2509
    [13] 於乾英, 张金仓, 贾蓉蓉, 敬 超, 曹世勋. 多自旋态离子Co替代诱导La2/3Ca1/3MnO3体系的输运反常.  , 2008, 57(1): 453-459. doi: 10.7498/aps.57.453
    [14] 曾中明, 韩秀峰, 杜关祥, 詹文山, 王 勇, 张 泽. 双势垒磁性隧道结的磁电阻效应及其在自旋晶体管中的应用.  , 2005, 54(7): 3351-3356. doi: 10.7498/aps.54.3351
    [15] 钟智勇, 刘爽, 张怀武, 石玉. (CoFe)1-xAgx颗粒巨磁电阻薄膜的磁折射效应研究.  , 2004, 53(5): 1520-1523. doi: 10.7498/aps.53.1520
    [16] 都有为, 王志明, 倪刚, 邢定钰, 徐庆宇. 高度取向石墨的巨磁电阻效应.  , 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [17] 李晓薇. 超导体/铁磁体绝缘层-超导体隧道结的直流Josephson效应.  , 2002, 51(8): 1821-1825. doi: 10.7498/aps.51.1821
    [18] 董正超. 铁磁-绝缘层-铁磁-d波超导结中的量子干涉效应对微分电导与散粒噪声的影响.  , 2002, 51(4): 894-897. doi: 10.7498/aps.51.894
    [19] 陈慧余, 罗有泉, 朱弘, 温琳清. 81NiFe/Cr多层膜磁电阻单向各向异性与交换耦合.  , 1994, 43(7): 1185-1191. doi: 10.7498/aps.43.1185
    [20] 雷啸霖. 强交换场中无隙超导电性的Eliashberg方程研究.  , 1984, 33(2): 266-272. doi: 10.7498/aps.33.266
计量
  • 文章访问数:  6583
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2020-09-29
  • 上网日期:  2021-02-01
  • 刊出日期:  2021-02-20

/

返回文章
返回
Baidu
map