-
光学微分运算是边缘图像的光学检测核心原理, 与传统的数字图像处理方法相比, 具有效率高、结构简单且无需考虑算法和功耗等优点. 本文提出一种基于各向异性晶体的光学微分运算装置, 用定制的晶体片实现光的空间分化, 从而实现多角谱分量下的全方位边缘成像. 本文中的方案需要将光束的左右旋圆偏振分量横向分离, 再对中间部分的线偏振光进行滤波处理. 该方案主要是基于各向异性晶体的双折射效应, 整个装置整合为一条笔直的光路, 与自旋霍尔效应和超表面相比, 具备原理简单、成本较低且成像稳定的优点, 不过对晶体的厚度有较高的要求. 实验结果也较为理想地验证了此方案, 未来可望在量子观测、生物细胞和医学等领域实现一定潜在应用.Optical differential operation is the core principle of optical detection of edge images. Compared with the traditional digital image processing methods, the optical differential operation has high efficiency, simple structure, and needless to consider algorithms and power consumption. An optical differential operation device based on anisotropic crystal is proposed in this paper. Omni-directional edge imaging under multi-angle spectral components is realized by using a customized crystal chip. The scheme is mainly based on the birefringence effect of anisotropic crystal. It needs to separate the left and right circularly polarized component of the beam horizontally, and then filter the linearly polarized light in the middle. The whole device is integrated into a straight optical path. Although it has higher requirements for the thickness of crystal, it is simpler, cheaper and more stable than spin Hall effect and super surface principle. The experimental results also demonstrate that the scheme can be used in quantum observation, biological cell and medicine.
-
Keywords:
- anisotropic crystal /
- optical differential /
- edge imaging /
- birefringence
[1] Caulfeld H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar
[2] Miller D A B 2009 IEEE 97 1166Google Scholar
[3] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z, 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar
[4] Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar
[5] Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z 2020 Natl. Sci. Rev.Google Scholar
[6] Liu W L, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M Z, Coldren L A, Yao J P 2016 Nat. Photonics 10 190Google Scholar
[7] Vourkas I, Stathis D, Sirakoulis G C 2018 IEEE Trans. Emerg. Top. Comput. 6 145
[8] Willner A E, Khaleghi S, Chitgarha M R, Yilmaz O F 2014 J. Light Technol. 32 660Google Scholar
[9] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photonics 3 216Google Scholar
[10] Corcoran B, Monat C, Pelusi M, Grillet C, White T P, Faolain L O, Krauss T F, Eggleton B J, Moss D J 2010 Opt. Express 18 7770Google Scholar
[11] Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar
[12] Kwon H, Sounas D, Cordaro A, Polman A, Alu? A 2018 Phys. Rev. Lett. 121 173004Google Scholar
[13] Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405Google Scholar
[14] Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar
[15] Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar
[16] Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light-Sci. Appl. 4 e290Google Scholar
[17] Ling X H, Zhou X, Huang K, Y. Liu Y, Qiu C W, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar
[18] Mi C, Chen S, Zhou X, Tian K, Luo H, Wen S 2017 Phot. Res. 5 92Google Scholar
[19] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 Opt. Lett. 45 877Google Scholar
[20] Berry M V 1984 P. Roy. Soc. A-Math. Phy. 392 45
[21] Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar
[22] Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar
[23] 罗慧玲, 凌晓辉, 周新星, 罗海陆 2020 69 034202Google Scholar
Luo H L, Ling X H, Zhou X X, Luo H L 2020 Acta Phys. Sin. 69 034202Google Scholar
[24] Xu D Y, He S S, Zhou J X, Chen S Z, Luo H L 2020 Appl. Phys. Lett. 116 211103Google Scholar
[25] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘敏俊, 周新星, 李瑛, 陈书青, 范滇元 2020 69 014101Google Scholar
Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu M J, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar
[26] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 APL Photonics 5 036105Google Scholar
[27] 周毅, 陈瑞, 陈雯洁, 马云贵 2020 69 157803Google Scholar
Zhou Y, Chen R, Chen W J, Ma Y G 2020 Acta Phys. Sin. 69 157803Google Scholar
[28] Pham D L, Xu C, Prince J L 2000 Annu. Rev. Biomed. Eng. 2 315Google Scholar
[29] Holyer R J, Peckinpaugh S H 1989 IEEE Trans. Geosci. Remote Sens. 27 46Google Scholar
-
图 1 (a) 各向异性晶体的平行分束示意图; (b) λ/4波片将线偏振光转换为圆偏振光; (c) 基于各向异性晶体双折射的成像示意图
Fig. 1. (a) Schematic diagram of parallel beam splitting of anisotropic crystals; (b) quarter wave plate converts linearly polarized light into circularly polarized light; (c) schematic diagram of imaging based on anisotropic crystal birefringence.
图 2 (a) 光的传递函数演示图, 光源为氦氖激光器(波长
$\lambda $ = 632.8 nm), 半波片(half-wave plate, HWP), 控制光强使电荷耦合装置(charge-coupled device, CCD)成像效果达到最佳, 双折射晶体分束器(birefringent crystal beamsplitters, BCB)和QWP放置在两个GLP之间, L1 (lens 1)和L2 (lens 2)组成4f系统,$ {f}_{1} $ = 75 mm,$ {f}_{2} $ = 175 mm; (b) 光斑分裂对比图; (c) 实测空间传递函数图Fig. 2. (a) Demonstration diagram of light transfer function. The light source is a He-Ne laser (λ=632.8 nm). Half-wave plate (HWP), controlling light intensity to achieve the best imaging effect of charge-coupled device (CCD). The birefringent crystal beamsplitter (BCB) and QWP are placed between GLP1 and GLP2. L1 (lens 1) and L2 (lens 2) form a 4f system,
$ {f}_{1} $ = 75 mm,$ {f}_{2} $ = 175 mm. (b) Spot split comparison chart; (c) The measured space transfer function graph.图 3 边缘检测实验示意图. 4f系统中4个镜头的焦距分别为 75, 75, 175, 125 mm. CCD和L4的距离等于
$ {f}_{4} $ , 待测物和L1的距离为$ {f}_{1} $ . 两个4f系统完成边缘检测Fig. 3. Schematic illustration of the edge detection experiment. The focal lengths of the four lenses in the 4f system are 75, 75, 175, and 125 mm. The distance between the CCD and L4 is equal to
$ {f}_{4} $ , and the distance between the test object and L1 is$ {f}_{1} $ . Two 4f systems complete edge detection. -
[1] Caulfeld H J, Dolev S 2010 Nat. Photonics 4 261Google Scholar
[2] Miller D A B 2009 IEEE 97 1166Google Scholar
[3] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z, 2019 Proc. Natl. Acad. Sci. U. S. A. 116 11137Google Scholar
[4] Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M, Ruan Z C 2019 Phys. Rev. Appl. 11 034043Google Scholar
[5] Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S, Liu Z 2020 Natl. Sci. Rev.Google Scholar
[6] Liu W L, Li M, Guzzon R S, Norberg E J, Parker J S, Lu M Z, Coldren L A, Yao J P 2016 Nat. Photonics 10 190Google Scholar
[7] Vourkas I, Stathis D, Sirakoulis G C 2018 IEEE Trans. Emerg. Top. Comput. 6 145
[8] Willner A E, Khaleghi S, Chitgarha M R, Yilmaz O F 2014 J. Light Technol. 32 660Google Scholar
[9] Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J 2009 Nat. Photonics 3 216Google Scholar
[10] Corcoran B, Monat C, Pelusi M, Grillet C, White T P, Faolain L O, Krauss T F, Eggleton B J, Moss D J 2010 Opt. Express 18 7770Google Scholar
[11] Momeni A, Rajabalipanah H, Abdolali A, Achouri K 2019 Phys. Rev. Appl. 11 064042Google Scholar
[12] Kwon H, Sounas D, Cordaro A, Polman A, Alu? A 2018 Phys. Rev. Lett. 121 173004Google Scholar
[13] Shimotsuma Y, Kazansky P G, Qiu J, Hirao K 2003 Phys. Rev. Lett. 91 247405Google Scholar
[14] Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901Google Scholar
[15] Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903Google Scholar
[16] Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light-Sci. Appl. 4 e290Google Scholar
[17] Ling X H, Zhou X, Huang K, Y. Liu Y, Qiu C W, Luo H, Wen S 2017 Rep. Prog. Phys. 80 066401Google Scholar
[18] Mi C, Chen S, Zhou X, Tian K, Luo H, Wen S 2017 Phot. Res. 5 92Google Scholar
[19] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 Opt. Lett. 45 877Google Scholar
[20] Berry M V 1984 P. Roy. Soc. A-Math. Phy. 392 45
[21] Bomzon Z, Biener G, Kleiner V, Hasman E 2002 Opt. Lett. 27 1141Google Scholar
[22] Doskolovich L L, Bykov D A, Bezus E A, Soifer V A 2014 Opt. Lett. 39 1278Google Scholar
[23] 罗慧玲, 凌晓辉, 周新星, 罗海陆 2020 69 034202Google Scholar
Luo H L, Ling X H, Zhou X X, Luo H L 2020 Acta Phys. Sin. 69 034202Google Scholar
[24] Xu D Y, He S S, Zhou J X, Chen S Z, Luo H L 2020 Appl. Phys. Lett. 116 211103Google Scholar
[25] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘敏俊, 周新星, 李瑛, 陈书青, 范滇元 2020 69 014101Google Scholar
Xie Z Q, He Y L, Wang P P, Su M Y, Chen X Y, Yang B, Liu M J, Zhou X X, Li Y, Chen S Q, Fan D Y 2020 Acta Phys. Sin. 69 014101Google Scholar
[26] He S S, Zhou J X, Chen S Z, Shu W X, Luo H L, Wen S C 2020 APL Photonics 5 036105Google Scholar
[27] 周毅, 陈瑞, 陈雯洁, 马云贵 2020 69 157803Google Scholar
Zhou Y, Chen R, Chen W J, Ma Y G 2020 Acta Phys. Sin. 69 157803Google Scholar
[28] Pham D L, Xu C, Prince J L 2000 Annu. Rev. Biomed. Eng. 2 315Google Scholar
[29] Holyer R J, Peckinpaugh S H 1989 IEEE Trans. Geosci. Remote Sens. 27 46Google Scholar
计量
- 文章访问数: 6476
- PDF下载量: 135
- 被引次数: 0