-
设计并加工了两款基于宽波束磁电偶极子天线单元的宽角扫描线性阵列. 首先,通过加载磁偶极子的方法拓展了天线单元的3-dB波束宽度. 然后, 基于该宽波束天线单元设计了两款具有良好宽角扫描特性的一维阵列天线. 实测结果表明,天线单元的E面方向图3-dB波束宽度在9GHz—12 GHz均大于107°, H面方向图3-dB波束宽度在7GHz—12 GHz均大于178°. E面阵列中心单元的有源驻波比在9GHz—13 GHz小于2, 相对阻抗带宽为36.36%. H面阵列中心单元的有源驻波比在9.6GHz—12.6 GHz小于2.5, 相对阻抗带宽为27.03%. E面阵列在9GHz—12 GHz可实现 ± 70°的有效宽角扫描. H面阵列在9GHz—GHz可实现 ± 90°的有效宽角扫描. 与传统的扫描阵列相比, 设计的阵列可实现有效宽带宽角扫描, 在X波段相控阵雷达方面具有广阔的应用前景.Microstrip phased array has aroused interest of many researchers because of its beam agility. However, a big problem for typical microstrip array is that its main beam can only scan from about –50° to 50°, with a gain loss of 4-5 dB. Meanwhile, the relatively narrow operating bandwidth of microstrip antenna is also a problem in application. These flaws have dramatically limited its applications and spawned many studies on phased array with wide-angle scanning capability. Several methods have been proposed to broaden the scanning coverage of phased array, such as utilizing pattern-reconfigurable antenna as an element of array, taking wide-beam antenna as the element of array, and adopt metasurface as the top cladding of array. However, most of existing researches mainly focus on achieving wide-angle scanning performance within a relatively narrow bandwidth. A phased array that possesses wide-angle scanning capability at both main planes within a relatively wide bandwidth is highly desirable. In this paper, a wide-beam magnetoelectric (ME) dipole antenna is proposed. It consists of an ME dipole antenna in the form of microstrip patch and a pair of magnetic dipoles. Metallic through holes integrated with patches and ground are utilized to form magnetic currents. Extra magnetic dipoles are added to broaden the 3-dB beam-width. The simulated results reveal that the 3-dB beam-width of the proposed antenna is greater than 107° in the E-plane (9 GHz–12 GHz) and 178° in the H-plane (7 GHz–12 GHz) respectively. The impedance bandwidth of the proposed antenna is 53.26% from 7.3 GHz to 12.6 GHz (VWSR < 2). Based on the proposed antenna element, two linear phased arrays are fabricated and measured. To test the wide-angle scanning capability of the arrays, each antenna element is simply fed with alternating currents with identical amplitude and linearly increasing phases. The measured results reveal that the wide-angle scanning capability of H-plane array and E-plane array can be obtained from 9 GHz to 12 GHz. The scanning beam of the H-plane array can cover the range from -90° to 90°. The scanning beam of the E-plane array can cover the range from –70° to 70°. The impedance bandwidth of the central antenna is 27.03% for the H-plane array from 9.6 GHz to 12.6 GHz (active VWSR < 2.5) and 36.36% for the E-plane array from 9 GHz to 13 GHz (active VWSR < 2) respectively. Hence, the proposed method can be used as a reference for designing a wide-beam antenna and wide-angle scanning phased array and the designed phased arrays can be applied to X-band radar systems.
-
Keywords:
- wide beam /
- wide-angle scanning /
- magnetoelectric(ME) dipole antenna /
- phased array
[1] 张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页
Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)
[2] Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar
[3] Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar
[4] Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar
[5] Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar
[6] Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar
[7] Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar
[8] Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar
[9] Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar
[10] Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar
[11] Lin G 2007 Radar Sci. Technol. 5 157
[12] Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar
[13] Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar
[14] Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar
[15] Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar
[16] Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar
[17] Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar
[18] Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar
[19] Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar
[20] Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar
[21] Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar
[22] Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35
[23] Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar
[24] Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar
[25] Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1
[26] Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar
[27] 郑贵 2016 硕士学位论文 (成都: 电子科技大学)
Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[28] 王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)
Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[29] 徐志 2008 博士学位论文 (西安: 西安电子科技大学)
Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[30] Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87
[31] Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar
-
表 1 宽波束天线单元参数
Table 1. Parameters of the wide-beam antenna.
天线参数 L W H L1 L2 L3 L4 L5 L6 L7 L8 W1 W2 W3 W4 W5 W6 W7 参数值/mm 15 9 3.5 0.6 3.2 2.2 2 1.5 0.5 3.2 1.5 5 1.5 1.5 2.8 6 2 1 表 2 天线单元3-dB波束宽度
Table 2. 3-dB beam-width of the antenna.
频率/GHz E面3-dB波束宽度/(°) H面3-dB波束宽度/(°) 7 97 180.4 8 101.1 178.2 9 107 178.4 10 115.8 185.2 11 135.5 220.9 12 180.6 360 表 3 2号天线与3号天线增益对比
Table 3. Comparison between Ant.2 and Ant.3.
频率/GHz 参考天线增益/dBi 本文天线增益-/dBi 9 5.91 4.19 10 5.98 3.91 11 5.84 3.59 12 5.43 2.87 表 4 已报道宽波束磁电偶极子天线与本文天线特性对比
Table 4. Comparison between the reported and proposed magneto-electric dipole antenna.
文献 相对阻抗带宽/% 工作频带/GHz 增益/dBi 剖面/λ E面波束宽度/(°) H面波束宽度/(°) [16] 34.6 3.1—4.4 — 0.21 174 112 [17] 81.1 3.3—7.8 3.65 ± 1.65 0.27 215 (5.5 GHz)
106 (7.5 GHz)186 (5.5 GHz)
83 (7.5 GHz)[24] 41 2.42—3.7 6.3 0.45 75 120 [25] 63 2.76—5.3 5 0.15 129.1 (3.4 GHz)
151.6 (4.9 GHz)100.4 (3.4 GHz)
94.2 (4.9 GHz)[26] 22.6
19.63.25—4.08
4.29—5.226.9 ± 0.3
5.4 ± 0.70.27
0.2391 (3.5 GHz)
168 (4.9 GHz)
83 (3.5 GHz)
74 (4.9 GHz)83 (3.5 GHz)
162 (4.9 GHz)
90 (3.5 GHz)
133 (4.9 GHz)本文 53.26 7.3—12.6 3.53 ± 0.66 0.116 >97 >178.2 表 5 已报道X波段相控阵与本文相控阵天线特性对比
Table 5. Comparison between the reported and proposed X-band phased arrays.
-
[1] 张祖稷, 金林, 束咸荣 2005 雷达天线技术 (北京: 电子工业出版社) 第221页
Zhang Z J, Jin L, Shu X R 2007 Radar Antenna Technology (Beijing: Publishing House of Electronics Industry) p221 (in Chinese)
[2] Bai Y Y, Xiao S Q, Wang B Z, Ding Z F 2010 J. Infrared Millim. Terahertz Waves 31 1Google Scholar
[3] Bai Y Y, Xiao S Q, Tang M C, Ding Z F 2011 IEEE Trans. Antennas Propag. 59 4071Google Scholar
[4] Ding X, Wang B Z, He G Q 2013 IEEE Trans. Antennas Propag. 61 5319Google Scholar
[5] Xiao S Q, Zheng C R, Li M, Xiong J 2015 IEEE Trans. Antennas Propag. 63 2364Google Scholar
[6] Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 396Google Scholar
[7] Ding X, Cheng Y F, Shao W, Wang B Z 2017 IEEE Trans. Antennas Propag. 65 4548Google Scholar
[8] Ge L, Luk K M 2015 IEEE Antennas Wireless Propag. Lett. 14 28Google Scholar
[9] Ge L, Luk K M 2016 IEEE Trans. Antennas Propag. 64 423Google Scholar
[10] Shi Y, Cai Y, Yang J, Li L 2019 IEEE Antennas Wireless Propag. Lett. 18 28Google Scholar
[11] Lin G 2007 Radar Sci. Technol. 5 157
[12] Wang R, Wang B Z, Hu C, Ding X 2015 IEEE Trans. Antennas Propag. 63 3908Google Scholar
[13] Wang R, Wang B Z, Ding X, Yang X S 2017 Sci. Rep. 7 2729Google Scholar
[14] Liu C M, Xiao S Q, Tu H L, Ding Z F 2017 IEEE Trans. Antennas Propag. 65 1151Google Scholar
[15] Cheng Y F, Ding X, Shao W, Yu M X, Wang B Z 2017 IEEE Antennas Wireless Propag. Lett. 16 876Google Scholar
[16] Yang G W, Li J Y, Wei D J, Xu R 2018 IEEE Trans. Antennas Propag. 66 450Google Scholar
[17] Yang G W, Li J Y, Yang J J, Zhou S G 2018 IEEE Trans. Antennas Propag. 66 6724Google Scholar
[18] Yang G W, Chen Q Q, Li J Y, Zhou S G, Xing Z J 2019 IEEE Acc. 7 71897Google Scholar
[19] Chattopadhyay S 2009 IEEE Trans. Antennas Propag. 57 3325Google Scholar
[20] Yang H H, Li T, Xu L M, Cao X Y, Gao J, Tian J H, Yang H N, Sun D 2019 IEEE Acc. 7 152715Google Scholar
[21] Lü Y H, Ding X, Wang B Z, Anagnostou D E 2020 IEEE Trans. Antennas Propag. 68 1402Google Scholar
[22] Luk K M, Wong H 2006 Int. J. Microw. Opt. Technol. 1 35
[23] Ng K B, Wong H, So K K, Chan C H, Luk K M 2012 IEEE Trans. Antennas Propag. 60 3129Google Scholar
[24] Li Y J, Luk K M 2014 IEEE Trans. Antennas Propag. 62 1830Google Scholar
[25] Lai J, Feng B, Zeng Q 2019 IEEE 6th International Symposium on Electromagnetic Compatibility Nanjing, China November 1–4, 2019 p1
[26] Feng B T, Zhu C, Cheng J C, Sim C Y D 2019 IEEE Acc. 7 43346Google Scholar
[27] 郑贵 2016 硕士学位论文 (成都: 电子科技大学)
Zheng G 2016 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[28] 王茂泽 2014 硕士学位论文 (西安: 西安电子科技大学)
Wang M Z 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)
[29] 徐志 2008 博士学位论文 (西安: 西安电子科技大学)
Xu Z 2008 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[30] Smolders A B 1996 Proceedings of International Symposium on Phased Array Systems and Technology Boston, MA, USA, October 15–18, 1996 p87
[31] Kedar A, Beenamole K S 2011 Prog. Electro. Res. B 27 235Google Scholar
计量
- 文章访问数: 8453
- PDF下载量: 230
- 被引次数: 0